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ABSTRACT

This paper is part of a program to study Alperin’s weight conjecture and
Dade’s conjecture on counting ordinary characters in blocks for several
finite groups. The classifications of radical subgroups and certain radi-
cal chains and their local structures of the simple Conway’s third group
have been obtained by using the computer algebra system CAYLEY. The
Alperin weight conjecture and the Dade final conjecture have been con-
firmed for the group.

Introduction

Let G be a finite group, p a prime and B a p-block of G. Alperin in [1] conjectured
that the number of B-weights should equal the number of irreducible Brauer
characters of B. Dade in [7] has presented a conjecture exhibiting the number of
ordinary irreducible characters of a fixed height in B, in terms of an alternating
sum of similar integers for p-blocks of some local subgroups of the group G. By
Dade [7], his final conjecture needs only to be verified for finite non-abelian simple
groups and is equivalent to the ordinary conjecture whenever a finite group has
a trivial Schur multiplier and outer automorphism group. In this paper we verify
the Alperin weight conjecture and the Dade ordinary conjecture, and so the final
one, for the simple Conway’s third group.

Most of the calculations were carried out using the CAYLEY computer system
[4]. In Section 1, we fix our notation and state the two conjectures. In Section
2, we classify radical subgroups, determine their local structures and verify the
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Alperin weight conjecture. In Section 3, we do some cancellations in the alter-
nating sum when p = 2 or 3, and then determine radical chains and their local
structures. In the last Section, we verify the Dade conjecture.

1. The Alperin and Dade conjectures

Let R be a p-subgroup of a finite group G. Then R is radical if O,(N(R)) = R,
where O,(N(R)) is the largest normal p-subgroup of the normalizer N(R) =
N¢(R). Denote by Irr(G) the set of all irreducible ordinary characters of G, and
let Blk(G) be the set of p-blocks, B € BIk(G) and ¢ € Irr(N(R)/R). The pair
(R, ) is called a B-weight if ¢ has p-defect 0 and B(¢)® = B (in the sense
of Brauer), where B(yp) is the block of N(R) containing ¢. A weight is always
identified with its G-conjugates. Let W(B) be the number of B-weights, and
£(B) the number of irreducible Brauer characters of B. Alperin conjectured that
W(B) = ¢(B) for each B € Blk(G). If a defect group D of B is cyclic, the Alperin
conjecture follows by Theorem 9.1 of [7]. Thus we may suppose D is non-cyclic.
Given a p-subgroup chain

(1.1) C:Ph<P<---<P,
of a finite group G, define |C| =n, Cx: Py < P < -+ < P, C(C) = Cg(Fy),
and
(1.2) N(C) = No(C) = N(Po) N Ng(P) N -1 No(Py):
The chain C is said to be radical if it satisfies the following two conditions:

(8) Py=0,(G) and (b) Pi=O0p(N(Cy))
for 1 < k < n. Denote by R = R(G) the set of all radical p-chains of G. For
B € BIk(G) and integer d > 0, let k(N(C), B, d) be the number of characters in
the set
(13)  T(N(C), B,d) = { € In(N(C)): BW) = B, d(y) = d},
where d(4)) is the defect of v (see [7, (5.5)] for the definition). Dade in [7) gives
the following conjecture.
ORDINARY CONJECTURE: If Op(G) = 1 and B is a p-block of G with defect
d(B) > 0, then for any integer d > 0,
(14) 3 (-)K(N(C), B,d) =0,

CeR/G

where R /G is a set of representatives for the G-orbits in R.
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2. Radical subgroups and weights

Let ®(G, p) be a set of representatives for conjugacy classes of radical subgroups
of G. For H,K < G, we write H <¢ K if z7'Hz < K; and write H €¢ ®(G,p)
if z7'Hz € ®(G,p) for some x € G. We shall follow the notation of [6]. In
particular, pi_‘”’y is an extra special group of order p!'*27 with exponent p or
plus type according as p is odd or even. If X and Y are groups, we use X.Y
and X :Y to denote an extension and a split extension of X by Y, respectively.
Given n € N, we use E,» or simply p™ to denote the elementary abelian group
of order p™, Z, or simply n to denote the cyclic group of order n, and Da, to
denote the dihedral group of order 2n.
Let G be the simple Conway’s third group Cos. Then

|G} =210.37.5%.7.13.23,

and we may suppose p € {2,3,5}, since both conjectures hold for a block with a
cyclic defect group by [7].

We denote by Irr®(H) the set of ordinary irreducible characters of p-defect 0
of a finite group H. Given R € ®(G,p), let C(R) = C¢(R) and N = Ng(R). If
By = By(G) is the principal p-block of G, then by [3, (1.3)],

(2.1) W(Bo) = ) |’ (N/C(R)R),
R

where R runs over the set ®(G, p) such that the p-part |C(R)R/R)|, of |C(R)R/R)|
is 1. The character table of N/C{R)R can be created by CAYLEY, so that we
can find the number | Irr’(N/C(R)R)|.

In the tables of Propositions (2A), (2B) and (2C), if the p-part |C(R)R/R|,
is not 1, then by (2.1), there exist no By-weights of the form (R, ¢), so that we
omit the number | Irr®(N/C(R)R)|.

(2A): The non-trivial radical 5-subgroups R of Cos (up to conjugacy) are

R C(R) N | Irr’(N/C(R)R)|
5 5 x As (5 x A5).4
5it? 5 5.72.(3 x 8).2 18.

Proof: 'The proof of (2A) follows by Lemmas 5.7 and 5.14 of [9].

The calculations in the Propositions (2B) and (2C) are carried out using the
CAYLEY computer system. The approach using CAYLEY to classify radical p-
subgroup classes is explained in [3]. We first choose a Sylow p-subgroup S (using
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CAYLEY), and then calculate the subgroup lattice of S. For each subgroup R in
the lattice, we calculate the normalizer N(R) of R in G and the normal subgroup
classes of N(R). If the largest order of the p-subgroups in the normal subgroup
classes of N(R) is the same as the order of R, then R is a radical subgroup of G.
For a p-group H, CAYLEY can test whether or not H is abelian (using the centre
of the subgroup) and elementary abelian. In the Propositions (2B) and (2C), we
also calculate the radical p-subgroups of some maximal subgroups; these radical
subgroups will be used in Section 3 to classify the radical p-chains.

(2B): The non-trivial radical 3-subgroups R of Coz (up to conjugacy) are

R C(R) N | Irr®(N/C(R)R)|
3 3xLy8):3 S3xLy8):3
3t 3 344 486 4
35 35 35: (2 x Myy) 2
S 3 S (2% 8Dy) 14,

where S € Syly(Co3) and SDys is a semidihedral group of order 2*.

Proof: Given i € {1,2,3}, let M; be a maximal subgroup of G = Cos such that
M ~ 83 x Ly(8): 3, My ~ 31" : 4Sg and M3 ~ 3%: (2 x My;) (see [6, p. 134]).
If T is an elementary 3-subgroup of G, then by [9, p. 73], N(T') < M, for some
i. If R is a non-trivial radical 3-subgroup of G, then Q,(Z(R)) is elementary
abelian and N(R) < N(£21(Z(R))), since 23(Z(R)) is a characteristic subgroup
of R. Thus we may suppose R € ®(M,, 3) for some i and N(R) = Ny, (R).

Using CAYLEY, we can calculate the normalizers of all the 3-subgroups of G
(see the remark before Proposition (2B)). If M is a normalizer of a subgroup of
order 3 such that M has the same composition factors, which can be obtained by
CAYLEY, as that of Mj, then M is conjugate to M;. Similarly, since M, and
M3 are normalizers of some 3-subgroups, we can easily identify them from the
normalizers of 3-subgroups of G.

Let M = My, 3= O3(M;) and S’ € Syl3(M;). Apply the approach described
before (2B) to M. We have that M has two radical 3-subgroups with orders 3
and |S’|. Note that a Sylow 3-subgroup is always a radical subgroup and O3(M)
is a subgroup of each radical 3-subgroup of M (cf. [11, Lemma 2.1]). Thus we
may suppose

&(S5 x La(8): 3,3) = {3,5'}.

Using CAYLEY, we find that the normalizers Ny, (S’) and Ng(S’) have different
orders, so that Np, (S') # N(S’). Since M is maximal in G, Ng(3) = M =
Njs(3) and so we may suppose 3 € ®(G, 3).
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Let 31* = 03(M,) and 3° = O3(M3). Replace M; by M or Ms in the case
when M = M;. Note that a Sylow 3-subgroup of M and Mj3 is also a Sylow
3-subgroup of G. Thus by CAYLEY,

®(M,,3) = {317,S} and ®(M3,3)={3° 5},

and using CAYLEY, we have Ny, (R) = N(R) for each R € ®(M;,3). Thus
we may suppose ®(M;,3) C &(G,3) for i = 2,3 and each non-trivial element
of ®(G,3) is given (up to conjugacy) by (2B). In addition, | Irr’(4Se)| = 4, by
CAYLEY. Since | Irr®(M1,)] = 1 (see [6, p. 18)), it follows that | Irr®(M3/3%)] = 2.
If Q € Syl3(Miy), then Npy,, (Q)/Q = SDoga (cf. [3, (24))). Since [N(S)/S| = 2°,
it follows that N(S) ~ S: (2 x SD,4) and |Irt®(N(S)/S)| = 14.

(2C): The non-trivial radical 2-subgroups R of Cos (up to conjugacy) are

R C(R) N/C(R)R |Iri°(N/C(R)R)|

2 2.56(2) 1

2* 2* X Mys 1

22 22 x S5 3

23 23 x S5 F3
24 24 Ag 1
2294 22 Se 1
24+0 2 L3(2) 1
2304 23 L3(2) 1
22 .6 22 F%.S; 1
2.23.25 2 Ss 1
(2.23.25)* 2 S, 1
2.2% 24 2 Ss 1
(2.24.24)* 2 Ss 1
S 2 1 1

where S € Syl,(Coj), H* denotes a non-conjugate subgroup of Cos which is
isomorphic to H, and F[: denotes the Frobenius group with kernel E,. and
complement Z,, .

Proof: If1 <14 < 6, then by [6, p. 134}, G = Coz has maximal subgroups M; such
that My ~ 2.56(2), My ~ 2%.Ag, M3 ~ 2Xx My3, My ~ 22.[27.3%].85, M5 ~ A4xSs
and Mg ~ S3 x L(8): 3. Suppose 1 # R € ®(G,2) and W = ,(Z(R)), so that
N(R) < N(W). As shown on page 68 of [9] we may suppose N(R) < N(A)
for some 2A-pure or 2B-pure elementary abelian 2-subgroup A of G. Indeed,
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let t and s be the number of involutions of classes 2A and 2B, respectively.
Since G has exactly two classes of involutions, it follows that ¢ + s + 1 = |W]|
is a power of 2. In addition, let X (resp. Y) be the subset of W consisting
of involutions of class 2A (resp. 2B) such that the product of any two distinct
involutions of X (resp. Y) is an involution of class 24 (resp. 2B). If X # ), then
X generates a 2A-pure elementary abelian 2-subgroup A and N(W) < N(A).
Sir;lilarly, if Y # 0, then Y generates a 2B-pure elementary abelian 2-subgroup
A and N(W) < N(A). Suppose X =Y = (. Let {z1,...,2:} and {y1,...,¥s}
be the subsets of W consisting of involutions of classes 24 and 2B, respectively.
Since the product of any two distinct involutions of class 24 is in class 2B and the
product of any two distinct involutions of class 2B is in class 24, it follows that
x12Z;y; is either 1 or an involution of class 24 for any ¢ # 1 and 1 < j < s, and
moreover, £12;y; = 12y Y; if and only if i = ¢’ and j = j/. Thust+1> (t—1)s.
Similarly, s +1 > (s — 1)t. Since t + s+ 1 is a power of 2, it follows that either
t =1or s = 1. In the former case W has a unique involution of class 24, so
that N(W) < N(24). In the latter case N(W) < N(2B). It follows that we
may suppose N{W) < N(A) for some 2A-pure or 2B-pure elementary abelian
2-subgroup A of G

By Lemmas 5.8, 5.9 and 5.10 of [9], N(A) < M, for 1 < ¢ < 5, except when A
is a 2B-pure and A ~ 23, in which case N(A) < Mg (see the remark after Lemma
5.10 of [9]). Thus N(R) <¢ M; for some ¢, and we may suppose R € ®(M;,2)
satisfying N(R) = Ny, (R).

Using CAYLEY, we can identify the maximal subgroups M; for 1 < ¢ < 5 with
the normalizers of 2-subgroups of G, and Mg with the normalizer of a 3-subgroup.
Applying the approach described before (2A) to each maximal subgroup M;, we
can classify the radical 2-subgroups of M;. For each radical subgroup R, the
central series of R which can be calculated by CAYLEY gives the structure of R.

(1) Let 2 = Oy(M;). Using CAYLEY, we have that

(2.2) (M:,2) = {2,22.24,2176,22.26 2.23 95 (2.2%.25)*, (2.21.2)*, S},
where S € Syl,(G). By CAYLEY, Ny, (R) = N(R) for each
Re ®&(M;,2)\{22.25} and Ny, (22.25) = 22.25 Fh.2.
(2) 2¢ = 04(M,). By CAYLEY,
(2.3) ®(M,,2) = {2%,2475,2%.24, 22,26 2.23.25 (2.23.25)*, (2.21.2%)*, 5},

N, (R) = N(R) for each R € ®(M;,2)\{2%.25} and Ny, (22.25) = 22.26.53.55.
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(3) Let 2* = O2(M3). Then 2* is generated by a 2B-element. By [3, (2D)],
®(Mh2,2) = {1,Zs, E4, Es.Es, 21", Q}, where Q € Syl,(Miz). Thus

(2.4) O(Ms,2) = {2%,2%,2%,2 x 2174 2328 23 23 2},

where 22 = 2* X Zy, 28 = 2* x Ey, 23.2%3 = 2* x E4.Eg, and 22.22.2 = 2 x Q.
Moreover, by CAYLEY, N, (R) # N(R) for R € ®(Mj3,2)\{2*}.
(4) Let 22.26 = 02(M4). By CAYLEY,

(2.5) O(My,2) = {22.28,(2.23.25),2.24 24 (2.2* .2%)*, S},

and moreover, N, (R) = N(R) for all R € ®(My, 2).
(5) Let 22 = O9(Ms). Since ®(Ss,2) = {1,Z, Eq, Dg}, it follows that

(2.6) O(Ms,2) = {2%,23,(2Y)*,2% x Dg},

where 2% = 22x 7, and (2*)* = 22 x E;. Moreover, by CAYLEY Ny, (R) # N(R)
for each R € ®(Ms,2)\{2%}.
(6) Finally, if Zy € Syl,(S3) and @ € Syl,(Mg), then by CAYLEY,

q)(MG) 2) = {Z2’237 Q}

and moreover, Ny, (R) # N(R) unless R = 23.
Thus the nontrivial radical subgroups are given by (2C), and their normalizers
and centralizers are obtained by CAYLEY.

Denote by D(B) a defect group of a block B, Irr{B) the set of irreducible
ordinary characters of B, and k(B) = | Irr(B)|.

(2D): Let G = Coz and let BIk’(G,p) be the set of p-blocks with a non-trivial
defect group.

(a) Ifp =5 or 3, then BIK’(G,p) = {By, B:} such that D(B;) ~ Z,. In the
notation of [6, p. 135]

Irr(By) = { {xs,X12, X20, X35, X30} ifp =75,
1 - .
{x31,x32, X36} ifp=3.

(b) Ifp = 2, then BIK®(G, 2) = {Bo, By, By} such that D(B;) = 2, D(Bs) =¢
23 and €(B,) = 5. In the notation of [6, p. 135], Irr(B;) = {xa3, x34} and

Irr(Ba) = {6, X7, X18, X195 X29, X32: X38, X39 }-
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Moreover,

4 ifp=-5, 18 ifp=5,
@7 By = { 2 ifp=3,  £(Bo)= { 2 ifp=3,
1 ifp=2. 10 ifp=2.
Proof: If B € BIk(G, p) is non-principal with D = D(B), then Irt®(C(D)D/D)
has a non-trivial character, so by (2A), (2B) and (2C), D €¢ {5,3,2,23}. More-
over, for each such D, |Irr®(C(D)D/D)| = 1, so G has exactly one block with a
defect group D.

Using the method of central characters on elements of classes 2B, 3C and 5A,
we have Irr(B) given as in (2D). If D(B) is cyclic, then £(B) is the number of
B-weights. Thus 4(By) is given by (2.7).

Suppose p = 2 and B = B;. Since B; is non-principal, it follows that
D(Bj) =¢ 2 or 25. If D(B;) =g 2, then k(B) < 2 (cf. [8, p. 170]). Since
k(B) = 8, it follows that D(B) =g 23. Let K = C(2*) = 2* x M, and let
b € Blk(K) such that b = B. Then D(b) ~ 23 and b = by x by, where by is the
principal block of 2* and b, € Blk(M,2) with D(b;) ~ E4. By [10, Theorem 8.2],
M, has exactly one block b; with a defect group E4 and £(b;) = 3. Thus K has
exactly one block b such that ¢ = B, and moreover, £(b) = 3. As shown on page
72 of [9], 2° is 2B-pure, so that k(B) = £(B) + £(b) and £(B) = 5.

Finally, let £(G) be the number of p-regular conjugacy G-classes. Then £(By)
can be calculated by the following equation due to Brauer,

&)= |y uB) +|1mG))

BeBIK®(G p)

This completes the proof.

(2E): Let G = Coz and B a p-block of G with a non-cyclic defect group. Then
the number of B-weights is the number of irreducible Brauer characters of B.

Proof: If B = By, then (2E) follows by (2.1) and (2A)-(2D). Suppose p =2
and B = B;. Let R = D(B;) = 2%, and let § = 6; x 6, be a character of
Ca(R) = 2% x Sa, where 8, is the trivial character of R and 6, € Irr(S;) is the
character of degree 2. Since 8 is uniquely determined in Irr(C(R)) by its degree,
it follows that N(8) = N(R). By (2C), N(R) = (23 x S3).F3. Let F3 = (o) x (1),
where |o| = 7 and |7| = 3. Since o stabilizes 8, it follows by Clifford theory that
6 has 7 extemsions to H = {22 x 83).(0). Since 7 stabilizes # and 7 normalizes
(o), it follows that 7 permutes these extensions. Since T has order 3. (modulo
H), it follows that each (7)-orbit on the extensions¢untains either one or three
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characters. But 8 has only 7 extensions, so at least one {7)-orbit contains only
one character ¢’. Thus 6’ has an extension to N(R) = (H, ), so that 6 has an
extension to N(R). By [3, (1.4)], W(B2) = |It®(N(0)/C(R)R)| = | Irr(F3)| = 5,
since F? has 3 linear characters and 2 irreducible characters of degree 3 (cf. [5,
Proposition 3}}.

3. Radical chains

The notation and terminology of Sections 1 and 2 are continued in this section.
Let G = Cos, C € R(G) and N(C) = Ng(C).

(3A): Follow the notation of (2A). The radical 5-chains C of G {up to conjugacy)
are
C N(C) C N(C)
c1):1 G C(2):1<5 (5 x As).4
CB3):1<5<5  (5xF2)4 C@):1<54?  51F2249
where 5% € Syl;(5 x 4s).

Proof: Suppose C is a radical 5-chain given by (1.1} with |C| > 1, so that
Py = 1. By definition, P; is a radical subgroup of G, and so by (2A), we may
suppose Py =5 or 5. If Py = 51*%, then |C| =1 and C =¢ C(4). If P, = 5,
then N(C;) = N(P1) = (5 x As).4, so that either C =¢ C(2) or |C]| > 2. If
|C| > 2, then by definition, P, is a radical 5-subgroup of N(P;) and P2 # Py, so
that P, = 5% € Syl;(N(P1)), |C] = 2 and C =¢ C(3).

Suppose C' = C(3). Then N(C) = Ny (5?) = (5 x Na,(X)).4, where X is
a Sylow 5-subgroup of As. Thus N(C) ~ (5 x F2).4, since |N4,(X)| = 10 and
N4, (X) contains 2 linear characters and 2 irreducible characters of degree 2 (cf.
[5, Proposition 3]).

In the notation of (2B), define the radical 3-chains C(z) for 1 < i < 6 as follows:

C(1):1 C(2):1<3

CB):1<3< 8 C(4): 1< 34t
(3.1) CBh):1<3% <8 C(6):1< 35,
where S’ € Sy13(S3 X L2(8) 3)

(3B):
(a) Let R°(G) be the G-invariant subfamily of R(G) such that R%(G)/G =
{C(#):1<i<6}. Then

Y (DOKNEC),Bod) = Y. (-DICK(N(C), By, d)

CER(G)/G CER(G)/G
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for all integers d > 0.
(b) Suppose C is a chain given by (3.1). Then

C N(C) C N(C)

ca G C(2)  S3xLy(8):3
ci3) §.22 C(4)  34t:48s
0(5) S (2 X SD24) C(G) 35 : (2 X M]]).

Proof: Let C':1< Sand C":1< 3" < S. By CAYLEY,
N(C') = N(C") = N(S).

If ¢ € Irr(N(C'), B,d) for some block B and integer d, then by (1.3), ¥ €
Irr(N(C")), B(¥)® = B and d() = d. Since N(C’) = N(C"), it follows that
P € Irr(N(C")), the block B(%) is also a block of N(C"”) and d(¢)) = d. By
(1.3), ¥ € Irr(N(C"), B,d). Conversely, Irr(N(C"), B,d) C Irr(N(C"), B, d), so
that

Irr(N(C"), B,d) = Irt(N(C"), B, d).

Thus
k(N(C"),B,d) =k(N(C"), B,d)

and
(-D)ICTk(N(C"), B,d) + (-1)/¢" (N (C"), B,d) = 0,

so that we can delete C’ and C” in the sum (1.4).
Suppose C is a radical 3-chain given by (1.1). Then P; is radical in G and we
may suppose Py € ®(G,3). If P; = 3, then by (2B),

N(Cl) = N(Pl) = 53 X L2(8) 3

and moreover, ®(N(C1),3) = {3,5'}. Thus either C =¢ C(2) or |C] > 2. In
the latter case we may suppose P, € ®(N(P,),3), since P, is radical in N(Py),
Thus P, =¢ 8" and N(C3) = Ny(p,)(S’). Since S’ is also a Sylow 3-subgroup
of N(C2), it follows that ®(N(C3),3) = {5’} and so C = Cy =g C(3). By
CAYLEY,

N(C(3)) = §' 2%

Suppose P; = 3},_+4. As shown in the proof of (2B) we have

®(N(Py),3) = {3}*%,S}, where S € Syl4(G).
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Either C =¢ C(4) or |C] > 2. In the latter case P, =¢ S and C =g C".
Similarly, if P; = 3%, then either C =g C(6) or C =g C(5). Finally, if P; =¢ S,
then C =4 C’. This proves (3B) (a). The proof of (3B) (b) follows from that of
(2B).

Following the notation of (2C), we define radical 2-chains: C(i) for 1 <7 < 16
as follows:

c(1):1 C(2):1<2

C(3):1<2<2228 C(4):1<2226

C(5): 1< 2% < 2i8 c):1<2!

C(M:1<2'< 22 26 C(8):1 < 2% <2226 < (2.23.25)

C(9):1<2r <2323 C(10): 1 < 2*

C(11): 1< 2* <2 x 2kt C(12): 1< 2* < 2% < (24)*

C(13):1<2* <23 C(14): 1< 2* <2323 < 23.23.2
(32) C(15):1 <23 < (24" C(16) : 1 < 23,

where 23.23,2 x 2114,23.23 2 € ®(M3,2), and (2%)* € Syl,(N(2%)). We have the
following proposition:
(3C):
(a) Let R°(G) be the G-invariant subfamily of R(G) such that R*(G)/G =
{C(k): k=1,2,---,16}. Then
> CDUKNE)Bd = 3 (-DKN(C),B.d)
CeR(G)/G CeR(G)/G
for all integers d > 0 and for each block B with a non-cyclic defect group.
(b) Let C be a chain given by (3.2). Then

c N(O) C N(C)

c(1) Cos C(2) 2.56(2)

C(3) 2226.F% .2 C(4) 2226 F% .55

C(5) 279, L3(2) C(6) 24 Ag

C(7) 22.26.85.53 C(8) (2.23.25)*.S;
C(9) 23.93.8, C(10)  2* x My,
Cc(11)  2x 2., C(12) 22x A4
C(13) 2x A4xS3 C(14)  28.232

C(15)  (2Y)*.F} C(16) (23 x S3).F3

Proof: (a) Suppose C’ is a radical 2-chain such that
(3.3) C':1<P/<---<Pl.
Let C € R(G) be given by (1.1) with P, € ®(G,?2).



120 J. AN Isr. J. Math.

CaSE (1): Let R € ®(My,2)\{2,22.25}, so that by the proof (2C) (1), R €
®(G,2). Let X(R) and Y(R) be subsets of radical chains such that

(3.4) X(R)={C'eR/G:P{ =R}, and

' Y(R) = {C' € R/G: P, =2 P, = R}.
By the proof (2C) (1), any two distict subgroups of ®(M;,2)\{2,22.26} are not
conjugate in G, so that any two distinct chains of X or Y are not G-conjugate.
Define M*(R) and M°(R) be subsets of R consisting of all G-conjugates of
chains in X'(R) and Y(R), respectively. Then M*(R) and M°(R) are G-invariant
with X(R) and Y(R) as their representative sets for G-orbits. For C' € X(R)
given by (3.3) with P = R, define

(3.5) g(C'):1<2<P[=R<Py<---<P,.

Then g(C’) € M°(R) and we may suppose g(C’) € Y(R). As shown in the
proof of (2C) (1) N(R) = N(1 < 2 < R), so that by (1.2), N(C") = N(g(C")).
Conversely, if g(C') : 1< Pl =2 < Py =R < P} <--- < P, € Y(R), then
C':1<Pj=R<Pj<--- <Pl isachian of X(R). So the map g from X(R)
to Y(R) is onto. Since ®(Mj,2)\{2,22.25} is a subset of ®(G, 2), the map g is a
bijection. Extend the map g to a bijection, which is also denoted by g between
MT(R) and M°(R). Since N(C') = N(g(C")), it follows by (1.3) that for any
block B and for any integer d > 0, Irr(N(C"), B, d) = Irr(N(g(C")), B, d), so that

(36) k(N(C"), B,d) =k(N(g(C")), B, d).
Since (—1)IC"1 k(N(C"), B,d) 4+ (—1)19C)N k(N (¢(C")), B,d) = 0 for C' € X(R),

we can delete the chains of M*(R) and M°(R) in the right hand side of (1.4).
Thus we may suppose

C¢ U (MF(R) U M°(R)).

Re®(M;,2)\{2,22.26}

In particular,
P ¢ ®(My,2)\{2,2%.2%} = {22.24,210,2.23.25 (2.23.25)*, (2.2 .2%)*, 8},

and if P, = 2, then C =¢ C(2) or P, = 22.26.
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CASE (2): Replace R by 2.24.2* € ®(My,2) and 2 by 22.2% € ®(My,2) in the
definition (3.4), and repeat the proof above. Then we may suppose P; # 2.24.24,
and if P, = 22.25, then P, #¢ 2.24.2%. By CAYLEY, Ny, (22.25) = N(C(3)) =~
2228 F2 .2, and N(C(3)) has 4 radical 2-subgroups. A Sylow 2-subgroup Q of
My4/2%.2% ~ F},.S3 is elementary abelian of order 4 and by (2.5), the preimage
in My of a subgroup of @) is a radical subgroup of My. In particular, each radical
subgroup of N(C(3)) is a radical subgroup of My. Using CAYLEY, we have that

®(22.25.F).2,2) = {22.25(2.2%.2%)%, (2.20.2%)*, S} C ©(My,2)

such that NN(C(g))(R) = N(R) = NM4(R) for R e (19(22.26.F322.2, 2)\{22.26}.
Let © = {(2.23.25)",(2.24.24), 5} C ®(22.25.F% 2,2). Given Q € ©, similar

to Case (1) we define G-invariant subfamilies £1(Q) and £%(Q) of R(G), such

that the representatives for G-orbits of £L(Q) and L£Y(Q) are given as follows:

LYQ)/G={C" e R/G: P =222% Pj=Q}, and

LY°Q)/G={C' e R/G: P{ =2, Py=2%2° P} =Q}.

If C' € L1(Q)/G is given by (3.3) with P| = 22.26 and P} = Q, then

glC):1<2<P[=222<Pj=Q<Pj<---<Pl,

is a chain of £%(Q) and moreover, g induces a bijection between L£1(Q)/G

and £%(Q)/G (see the proof of Case (1)). Since N(22.2%) = My and Ny, (Q) =

N(1<2<222% < Q)= N(Q), it follows by (1.2) that N(C") = N(g(C")). Thus

(3.6) holds for each C' € L*(Q)/G. A proof similar to that of Case (1) shows
that we may suppose

(3.8) cé¢ |Jr@uLi@).

Qeq

In particular, if P; = 22.25, then by (2.5), C =¢ C(4) and moreover, if P; = 2
and P, =¢ 22.26, then C =¢ C(3).

By Case (1), we may suppose P; ¢ ®(M;,2)\{2,22.2} and by Case (2) above
we may suppose P; # 2.21.2%. So by (2C), we may suppose

P; € ®(G,2)\({2.2*.2*} U ®(M1,2)\{2,22.26}) = {2,2*,22,2% 2% 2% 2% 22 26},
and moreover, if P; € {2,22.25}, then by Cases (1) and (2),

C e¢ {C(2),C(3),C(4)}.
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CASE (3): Let M*(23.2%) and M%(23.24) be defined as in Case (1) with R
replaced by 23.2¢ and 2 by 2%. A proof similar to that of Case (1) shows that
(3.6) holds for C' € M*(23.24), so that we may suppose P, # 23.2* and if
P, = 2%, then P, #g 23.2%. Let {2.23.25,(2.23.2%)* S} be a subset of ®(M,2)
given by (2.3) and let R € {2.23.25,(2.23.25)*, §}. Using CAYLEY, we can check
that N(R) = Np,(R) < N(2}1) = 21%%.15(2), so that R €g ®(N(2119),2).
Applying the approach described before (2B) to the subgroup N (2}r+6), we have
that N (2?6) has exactly 4 radical 2-subgroups, so that

B(2410.L3(2),2) = {2]1°,2.23.2%, (2.23.2)*, S} C @(M;,2),

and moreover, NN(2:—+6)(R) = N, (R) = N(R) for all R € ®(N(2}7°),2). Let
Q = {2.23:25(2.28.2%)* S} C @(217%.L3(2),2), and W € . Similar to the
proof of Case (1) we define G-invariant subfamilies K+ (W) and K°(W) of R(G),
such that

K*T(W)/G={C' € R/G: P{=2* P,=W}, and

(3.9)

A similar proof to that of Case (1) shows that there is a bijection g between
K+ (W) and K°(W) such that N(C") = N(g(C")) for each C' € K*(W)/G, so
that (3.6) holds and we may suppose

c¢ |J icrmyukow)).

weQ

Thus if P, = 2%, then by (2.3), we may suppose P, € {2}1¢,22.26 (2.24.24)},
and moreover, if P, =g 21*%, then C =¢ C(5).
By CAYLEY, Njy,(22.25) ~ 22.26.8,.9;, and

$(22.25.55.53,2) = {2%.25,(2.2%.2%)*, (2.2* 2")*, 5},

and moreover,
N, (22.29)(R) = Ny (R) = N(R)

for each R € ®(Npy,(22.25),2)\{22.2°}. Replace W by (2.2*.24)* and 2}7® by
2228 in the definition (3.9). We may suppose P; #¢ (2.2%.2%)*, and if P, = 2*
and P, =¢ 22.25, then Py 7 2.2%.2%.

Let C' be the chain 1 < 2% < 22.26 < (2.23.2%)* < S, and g(C’) be the
chain 1 < 2% < 2226 < S. Then N(C') = N(g(C")) = S and so by (1.3),
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Irr(N(C"), B,d) = Irr(N(g(C")), B,d) for any block B and integer d, so that
(3.6) holds and we can delete the chains C’ and g(C’) in the sum (1.4). If
P, = 2% and |C] > 2, then P, € {279,22.26}, since P, #¢ (2.2*.2*)*. Moreover,
if P, =¢ 217°, then C =g C(5) as shown above; if P, =g 22.2% and |C| = 2,
then C =g C(7). If P, =¢ 22.2% and |C| > 3, then P3 #¢ (2.2*.2%)* and so
we may suppose P3 € {(2.22.2%)* S}. Since C is not conjugate to the chain
1< 2% <2220 <8 it follows that P3 =g (2.23.2%)* and C =¢ C(8) whenever
|C] = 3. Suppose moreover, P; =¢ (2.2%.2%)* and |C] > 4. Then P; =¢ S,
since by the order, S and (2.23.2%)* are the only two radical 2-subgroups (up
to conjugacy) of N((2.23.25)*). In this case C is G-conjugate to 1 < 2¢ <
2226 < (2.23.2%)* < S, which is impossible. It follows that if P; = 2%, then
C 6 {C(5),C(6), C(T),C)}.

CasE (4): If P, = 23, then C = C(15) or C(16), since N(23) ~ (23 x S3).F?

and (N (23),2) = {23,(2%)*}, where (2%)* is a Sylow 2-subgroup of N(23).
Case (5): Let C':1 < 2" < S and g(C'): 1 < 2* < 2x 24 < &', where

2 x 2411, 8" = 23.23.2 € ®(M;3,2). Then N(C') = N(g(C")) = S’ and by (1.3),
Irr(N(C"), B,d) = Irr(N(g(C")), B,d) for any block B and integer d. So (3.6)
holds and we may delete the chains C’ and g(C’) in the sum (1.4).

By [3, (2D)], Na,(22) = 2 X Np,,(Zo) ~ 2% x S5 and by CAYLEY,
O2(Nps,(22)) is conjugate to O2(Ms) = 2% so we may identify Oa(Nas,(22))
with O2(Ms). As shown in the proof of (2C) (5), ®(Ss,2) = {1,Zs, E4, Dg} and
d(Ms,2) = {22,23,(24)*,22 x D}, where 23 = 22 x 7, and (2*)* = 2% x Ej.
Since Ny, (22) = 22 x S5 < Ms = A4 x Ss, it follows that

D(2? x S5,2) = {22,23,(24)*,22 x Dg} = ®(Ms,2).

Let Q% = {23,(2Y)*,22 x Dg} C ®(Np,(2%),2). Foreach R€ O, R=22x R’
for some R’ < S5, N, (22)(R) =~ 2% x Ns,(R') and N, (R) ~ A4 x Ng, (R').
Replace Q by a group Q' in Q*, 22.2¢ by 22 and 2 by 2* in the definition (3.7). If
C’ € L1(Q’) and P is the final subgroup of C’, then P = 22 x P’ and N(C') =
2?2 x N’; where P’ and N’ are some subgroups of Ss. Let g(C’) be a chain of
£9%(Q’) defined similar to the one after (3.7) (with Q replaced by Q’, 22.26 by 22
and 2 by 2*). Then P is also the final subgroup of g(C’) and N(g(C")) ~ A4 x N'.
Note that both 22 and A4 have exactly 4 irreducible characters of defect 2, and
all of them lie in their principal block. So there is a defect-preserved bijection ¢
between Irr(22) = Irr(By(2?)) and Irr(A4) = Irr(Bg(A4)).

If ¢ € Irr(N(C"), B, d), then % = ¢ X 1p2, B(¢)° = B and the defect d(¢) of 9
is d, where 1, € Irr(22), ¢, € Irr(N’) and B(v) is the block of N(C’) containing
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1. Since N(C') = 22 x N’ and 9 € Irr(B(%)), it follows that B(y) = Bo(22) x by,
where b is the block of N’ containing 1. If ¢*(10) = @(11) X )2, then ¢* (1) is
an irreducible character of N(g(C’)) = A4 x N’ and moreover, ¢* (%)) is a charac-
ter of By(A4) X by, so that B(p*(1)) = Bo(A4) x by. Since By(22)4+ = By(A4),
it follows that B(y)N@(C) = B(p* (1)) and so B(p*(¥))¢ = B (see [8, Lemma
I11.9.2]). Since ¢ is a defect-preserved bijection, it follows by the definition
[7, (5.5)] that ¢* is a defect-preserved injection and ¢*(¢) € Irr(N(g(C")), B, d).

Conversely, suppose x € Irt{N(g(C")), B,d). Since N(g(C")) = Ay x N', it
follows that y = x1 X x2 for some x; € Irr(44) and x2 € Irr{(N’). In addition,
B(x)¢ = B and d(x) = d. Thus B(x) = Bo(A4) X ba, where by is the block of
N’ containing x2. Since Irr{By(A4)) = Irr(A4) and ¢ is a bijection, there is a
character 9 € Irr(22) such that (1) = x1. If ¥ = 91 X x2, then d(¢) = d(x) =
d and v € Irr(By(22) X by), so that B(y) = By(22) x by. Since B(yh)N@(C) =
By(Aq4) x by = B(x) and since B(x)¢ = B, it follows that B(1))® = B and then
1 € Irr(N(C"), B,d). Thus p* (1)) = x and ¢* is a bijection. It follows that (3.6)
holds and we may suppose (3.8) holds for @’ € Q*. Similarly, if C’ : 1 < 2* < 2?
and g(C’) : 1 < 22, then N(g(C')) ~ A4 x S5 and N(C') ~ 22 x S5. Thus (3.6)
still holds and we may delete them in the sum (1.4).

Suppose P, = 2*. If |C| = 1, then C =¢ C(10) and we may suppose |C| > 2.
By (2.4) and the proof in Case (5), we may suppose P, € {2%,2 x 2}+4,23.23}
and moreover, if P =g 2 X 2?4, then |C| =2 and C' =¢ C(11), since

(N (2 x 2174),2) = {2 x 2214, 5"}
and 1 < 2* < 2 x 2}t < ' is deleted from the sum (1.4). If P, =¢ 2%, then
C =¢ C(13) or C(12) according as |C| = 2 or 3, since (N, (2%),2) = {23, (24)*}
(cf. Case (4)). If P, =g 23.23, then C =¢ C(9) or C(14) according as |C| = 2
or 3, since by the order, ®(Nyy, (23.2%),2) = {23.23, §'}. Hence if P, € {2*,2%},
then C € {C(1):1=9,...,14}.

(b) The proof of (b) follows easily by that of (a) above or (2C) (cf. [3, (2D)]).

4. The proof of Dade’s conjecture for Cog

The notation and terminology of Sections 2 and 3 are continued in this section.
The character table of the normalizer N(C) of each radical p-chain C given in
(3A), (3.1) or (3.2) can be obtained by CAYLEY.

(4A): Let B be a p-block of the simple Conway group G = Coz with'a positive
defect. If p is odd, then B satisfies the ordinary conjecture of Dade.

Proof: We may suppose p =5 or 3, and B = B,.



Vol. 112, 1999 ALPERIN AND DADE CONJECTURE 125

Suppose p = 5 and let C = C(2), C' = C(3). By (3A), N(C) ~ (5 x A5)4
and N(C') ~ (5 x F2).4. By CAYLEY, N(C) has 25 irreducible characters, 4
linear characters, 8 characters of degree 3, 5 of degree 4, 4 of degree 5, 2 of degree
12, 1 of degree 16 and degree 20. By Lemma 6.9 of Dade [7], if C” is a radical
p-chain of G such that N(C") has a p-block b inducing the block B of G, then
the final subgroup of C” is conjugate to a subgroup of D(B). In particular, if
B = By is the 5-block given by (2D) with D(B;) ~ 5, then k(N(C"), B;,d) # 0
for some d implies that C” =g C(1) or C(2), which are defined in (3A). By
Theorem 9.1 of [7], Dade’s conjecture holds for the cyclic block B, so that
by (1.4), k(N(C(1)),B1,d) = k(N(C), B1,d) for all integers d. By (2D) (a),
k(G,B;,d) = 5 or 0 according as d = 1 or d # 1, so that Irr(N(C), By,1)
contains 5 characters of defect 1 in Irr(N(C)). But Irr{(N(C)) has exactly 5 such
characters with degrees 5 and 20, so the remaining 20 characters of Irr(N(C))
{with height 0) are characters of Irr(By(N(C))) as G has only two blocks with
positive defect. Moreover, by the definition (5.5) of [7], k(N(C), Bp,d) = 20 or
0 according as d = 2 or d # 2. Since C(5%) = Cn(c)(5%) = 5% I N(C'), it
follows by [8, Corollary V.3.11] that N(C") has only the principal block, so that
Irr(N(C")) = Irr(Bo(N(C"))). By CAYLEY, N(C’) has 20 irreducible characters,
8 linear characters, 8 characters of degree 2, 2 of degree 4 and degree 6. By
definition, k{N(C"), By, d) = 20 or 0 according as d = 2 or d # 2. Thus

k(N(C), By,d) = k(N(C"), By, d).

for all integers d > 0. By CAYLEY, the degrees of irreducible characters of
N(C(4)) ~ 5}72.24.2 is given by Table 1.
Table 1. The degrees of characters of Irr(5£r+2.24.2)

&1 & & & & & &r & & Lo &u Lz &1z &ue
1 1 1 1 1 1 1 1 2 2 2 2 2 2

§15 &6 &1 18 19 S20 G211 f22 L3 Cou 25 Eoe
2 2 2 2 20 20 20 20 24 24 40 40

Since Cg(5472) = 5 < 5112 9 N(C(4)), it follows that Bo(N(C(4))) is the only
block of N(C(4)), so that Irr(N(C(4))) = Irr(Bp(N(C(4)))). By Table 1 and the
definition (5.5) of [7],

Irr(N(C(4)), Bo, 2) = {£19, €20, €21, €22, €25, 26}
and Irr(N(C(4)), Bo, 3) = Irr(N(C(4)))\ Irr (N(C(4)), By, 2). By (2D) (a),

Irr(By(G)) = Irr(G)\(Irr(B,) U Irr®(G))



126 J. AN Isr. J. Math.

and so by [6, p. 135], Irr(G, By, 2) = {X10, X11, X15, X275 X30, X40 } and
TIrr(G, Bo,3) = {xi: 1 <i<4, 6<i<9, 13<i<14, 18 <4< 19,
32 <4< 34, i = 21,25,36,38, 42}
It follows that

20 if d=3,
k(G, By, d) = k(N(C(4))), Bo,d) = { 6 ifd=2,
0  otherwise.
Thus Yi_, (~1)ICOI k(N (C(3)), B, d) = 0 for all integers d and (4A) follows by
(3A) when p=5.

Suppose p = 3. The proof of (4A) is similar to the case when p = 5. Let
C = C(2) and C' = C(3) given by (3.1). By (3B) (b), N(C) ~ S3 x Ly(8) : 3
and N(C’) ~ §’.2? and by CAYLEY, the degrees of characters in Irr(N(C)) and
Irr(N(C")) are given by Tables 2 and 3.

Table 2. The degrees of characters of Irr(Ss x L2(8) : 3)

& &2 & & & & &7 & & &io &1 &2 &3 &1a &5 e &1
1 1 1 1 1 1 2 2 2 7 7 7 7 7 7 8 8

18 &19 20 621 E22 a3 Eoq4 E25 26 Lo Los €29 E30 &3 €32 a3
8 8 8 8 14 14 14 16 16 16 21 21 27 27 42 54

Table 3. The degrees of characters of Irr(S’.22)

&1 &2 & b & &b & & C &o &1 &2 &3 & s
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

16 §17 &is &9 S0 €21 oo o3 Loa Cos C2s L7 €28 a9 a0
2 2 2 2 2 2 2 2 2 4 4 4 6 6 12

A proof similar to that of the case when p = 5 shows that the affirmative answer
to Dade’s conjecture for the cyclic blocks implies that

II'I‘(N(C),BI, 1) = {€30)§31)€33} - II‘I‘(N(C)),

and Irr(By(N(C))) = Iir(N(C))\ Irr(N(C), By, 1). In addition, by CAYLEY,
Cc(8') = Z(8') < 8" S N(C"), so that Irr(N(C")) = Irr(Bo(N(C"))). It follows
by the definitions (1.3) and (5.5) of [7] that

27 ifd=4,
k(N(C(2)), Bo,d) = k(N(C(3)), By, d) = {3 ifd=3,

0 otherwise.
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By CAYLEY, the degrees of irreducible characters of N(C(5)) ~ S: (2 x SDja)
and N(C(6)) =~ 35: (2 x M) are given as follows:

Table 4. The degrees of characters of Irr(S: (2 X SDj4))
&1 &2 & €1 & & &r & Eo &0 &1 &12 €13 &1a &5 e §17 &8
1 1 1 1 1 1 1 1 2 2 2 2 2 2 4 4 4 4
&19 €20 €21 22 £23 E2a Eo5 26 G217 €28 G20 &30 €31 32 £33 &34 £35 &36
4 4 4 4 8 8 8 8 8 8 16 16 16 16 18 18 18 18

E37 E38 €39 &40 €41 €42 €43 €44 Ea5 Cas Car €48 a9 &m0 &s1 Es2
32 36 36 36 72 72 72 72 72 72 V2 72 72 T2 72 72

Table 5. The degrees of characters of Irr(3%: (2 x M11))
& & & & & & &1 & & b0 fn &z &z &
1 1 10 10 10 10 10 10 11 11 16 16 16 16
&5 &ie &1r €18 €19 Eo0 &2 f22 &2z Eoa a5 o 27 &os
22 22 44 414 45 45 55 55 198 198 220 220 220 220

20 &30 €31 €32 €33 &3a &35 €36 Ear
220 220 220 352 440 880 880 880 880

By (2B), Ca(S) = Z(5) <

S < N(C(5)) and Cg(3%) = 3% 9 N(C(6)), so that
both normalizers N(C(5)) and N(C(6)) have only the principal block. It follows

that
33 ifd=717,

k(N(C),Bp,d) =< o ifd=35,
0 otherwise,
where C € {C(5),C(6)} and o = 19 or 4 according as C = C(5) or C(6).
Finally, consider C = C(4). By CAYLEY, the degrees of irreducible characters
of N(C) ~ 34*: 4S5 are given by Table 6.

Table 6. The degrees of characters of Irr(31++4: 45s)

& & & & & & &1 & & &0 & &2 &is &1a &is &ie &1 s
1 1 1 1 5 5 5 5 5 b 5 5 8 8 9 9 9 9

€19 €20 €21 €22 &23 €24 E25 &26 Sav E28 €20 30 €31 €32 €33 &34 35 &36
10 10 10 10 16 16 16 16 18 18 20 20 72 72 72 72 80 80

€37 £38 &30 C40 §a1 €42 €43 €aa Cas Eas Ear a8 a9 E50 €51 Es2 E53 b4
80 80 90 90 90 90 160 160 160 160 162 162 180 180 288 288 320 360

Similarly, since Cg(3474) = Z(3}™), it follows that

Irr(N(C(4))) = Ir(Bo(N(C(4)))-
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It follows by [6, p. 134] and Table 6 that

33 ifd=71,
B ifd=5,
k(N(C), By, d) = Gd—3

0 otherwise,

where C € {C(1),C(4)} and § = 4 or 19 according as C' = C(1) or C(4). Thus
6 .
Y (DICOK(N(C()), Bo,d) =0
j=1

for all integers d, and by (3B) (a), Dade’s conjecture holds when p = 3.

(4B): Let B be a 2-block of the simple Conway group G = Cog with defect
d(B) > 1. Then B satisfies the ordinary conjecture of Dade.

Proof: (1) Let C(i) be given by (3.2). If ¢ = B for some b € BIk(N(C(3))),
then by Lemma 6.9 of [7], the final subgroup of C(i) is a conjugate to a subgroup
of 23, so that i € {1,10,13,16} as 23 is 2B-pure. Let C = C(13) and C’' =
C(16), so that by (3C) (b), N(C) ~ 2 x A4 x S3 and N(C") ~ (2% x S3).F2.
Since Ng(2%) = N(C"), it follows by Brauer’s First and Third Main Theorems,
Theorems I11.9.7 and V.5.4 of [8] that N(C’) has two blocks by(C’) and by(C")
such that bo(C")¢ = By and by(C’)¢ = B,. Since every defect group contains
O2(N(C")) = 23, it follows that N(C’) has only two blocks. Now A4 has exactly
one block and S5 has exactly two blocks, so that N(C) has exactly two blocks
bo(C) and b2(C) such that bo(C) = By(N(C)). By (5.10) of [7] and Brauer’s
Third Main Theorem, by(C)¢ = By and b(C)¢ = By. Let Irr%(B) be the
subset of Irr(B) consisting of characters of defect d. By (1.3), Irt(N(C), B;, d) =
Irr(b;(C)) and Irr(N(C'), By, d) = Irr?(b;(C")) for i = 0,2

Since bo(C) = 30(2 X A4) X BO(S3) and bz(C) = 30(2 X A4) x by for the
non-principal block bz of Ss, it follows that | Irr%(b(C))| = 16 or 0 according as
d=4ord+#4, and |Irr%(b2(C))| = 8 or 0 according as d = 3 or d # 3. Using
CAYLEY, we can get the character table of N{(C’) and the degrees of characters
in Irr(N(C"}) are given by Table 7.

Table 7. The degrees of characters of Irr((2% x S3).F?)

& & €& & & & & & L &0 &t &z Lz L
1 1 1 1 1 1 2 2 2 3 3 3 3 6
&is &ie &ir &is &9 20 b1 Loz 23 24

6 7 7 7 7 7 7 14 14 14
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Using the method of central characters, we can get the irreducible characters of
bo(cl) and bz(cl),

Irr(2(C")) = {€7,8s, &0, €14, 15, €22, €23, €24}

and Irr(bo(C)) = Irr(N(C)\ Irr(52(C")). Tt follows that

a ifd=4,
k(N(C(13)),B,d) = k(N(C(16)), B,d) = { g ifd=3,

0 otherwise,

where (o, 3) = (16,0) or (0,8) according as B = By or B. Since N(C(10)) ~
2* x Mg, it follows by James [10, Theorem 8.2] and (2D) that k(G, Ba,d) =
k{N(C(10)), B2,d) = 8 or 0 according as d = 3 or d # 3. This proves (4B) when
B = B,.
(2) Suppose B = By. By CAYLEY, the degrees of irreducible characters of
N(C(9)) ~ 23.23.55 and N(C(14)) ~ 23.23.2 are given by Tables 8 and 9.
Table 8. The degrees of characters of Irr(23.23.5;)
& & &8 & & & & & L & & &z & &ua
i1 1 1 1 1 1 1 1 2 2 2 2 3 3

15 &1is &7 &is Lig &0 €21 &2 o3 L2040 bos L2 Lar os
3 3 3 3 3 3 6 6 6 6 6 6 6 6

Table 9. The degrees of characters of Irr(23.23.2)
&1 & & La & & &7 & & Lo & G2 &3 e €5 Cie
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

§17 &g &19 &20 €21 G2 L2z E2a Eos5 &2 f27 E28 E29 E30 E31 €32
2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4

Since C(23.23) = 2 x Cp,,(Es.Eg) = Z(22.23) (cf. (3, (2D)]), it follows by
Corollary V.3.11 of [8] that N(C(9)) has the unique block By(N(C(9))).
Similarly, Bo(N(C(14))) is the unique block of N(C(14)). It follows by (1.3)
that

16 ifd="7,
12 ifd=6,

k(N(C), By, d) = T
v ifd=35,

0  otherwise,
where C' € {C(9),C(14)} and v = 0 or 4 according as C = C(9) or C(14). By
CAYLEY, the degrees of irreducible characters of N(C(11)) ~ 2 x 2}7.S3 are
given by the following table:
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Table 10. The degrees of characters of Irr(2 x 2?4.53)

& & & & & & & & & Lo & &1z &z Gua
1 1 1 1 2 2 3 3 3 3 3 3 3 3
15 &6 &1 Lis 19 €20 b21 €22 o3 S2a €25 Eoe

3 3 3 3 4 4 4 4 6 6 8 8

Since C(2 x 217*) = 2 x Cry, (2451%) = Z(2 x 217), it follows that the principal
block is the only block of N(C(11)). By (3C) (b), N(C(10)) = 2* x M2 and
the principal block of M, is given by James [10, Theorem 8.2]. If C = C(10) or
C(11), then by Table 10 and [10, Theorem 8.2],

16 ifd=7,

4 ifd=6,
k(N(C),By,d) =< n ifd=35,

2 ifd=4,

0 otherwise,

where 7 = 0 or 4 according as C = C(10) or C(11). Similarly, Bo{N(C(15)))
is the only block of N(C(15)) and by CAYLEY, N(C(15)) ~ (2%)*.F3 has 16
irreducible characters of height 0. Since N(C(12)) = 22 x A4, the principal block
of N(C(12)) is the only block of N(C(12)) and moreover, k(N(C(15)), By, d) =
k(N(C(12)), By,d) = 16 or 0 according as d = 4 or d # 4. It follows that

16
(41) Y (-1)I°ON(N(C()), Bo,d) = 0.
=9
By CAYLEY, the degrees of irreducible characters of N(C(3)) ~ 22.2.F,.2 and
N(C(4)) ~ 22.25.F2,.S3 are given by Tables 11 and 12.

Table 11. The degrees of characters of Irr(22.26.F; .2)

&1 &2 & & & &6 &7 & & &0 & &1z L13 €14 15 &6 &17 s
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 6

§19 €20 a1 S22 €23 €24 &5 f25 Ear €28 L20 £30 €31 £32 €33 €34 €35 €36
6 6 6 8 8 8 8 8 8 9 9 9 9 9 9 9 9 12
E37 €38 &30 a0 Ear a2z €43 Eaa Ea5 G E47 €48 Ea9 &0 €51 Es2 €53 Eba
12 12 12 12 16 16 16 16 16 18 18 18 18 24 24 24 24 48
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Table 12. The degrees of characters of Irr(22.2%.F3;.Ss3)

&1 & & € & & &7 & & &0 & &z &1z 14 Gis
1 1 1 i 2 2 2 2 4 6 6 9 9 9 9
16 &17 €18 &19 E20 Eo1 K22 Sa3 f2a L5 L26 Lor L2 20 30
9 9 9 9 12 12 12 12 18 18 18 18 18 18 24
€31 €32 €33 €34 &35 &35 a7 €38 &390 Lao €a1 a2 €43 Laa a5
24 24 24 27 27 27 27 36 36 36 36 36 48 72 72

Since C(22.28) = Z(22.26) < 22.2%, it follows by [8, Corollary V.3.11] that the
principal block is the only block of N(C(3)) and N(C(4)). If C = C(3) or C(4),
then

16 ifd=10,
12 ifd=09,
10 ifd=38§,
k(N(C),Bo,d)=q = . -
g ifd=6,
0 otherwise,

where (o, 3) = (10,6) or (6,1) according as C = C(3) or C = C(4). By (2C),
N(C(5)) ~ 23_+6.L3(2) and N(C(6)) ~ 2*.Ag and by CAYLEY, the degrees of
irreducible characters of N(C(6)) are given by Table 13.

Table 13. The degrees of characters of Irr(2%.4g)

&1 & & & & & & & & &0 & &z &3 s
1 7 14 15 20 21 21 21 28 35 45 45 45 45
§is €16 &1ir Sis &9 20 €21 Go2 €23 S2a Eas
56 64 70 90 105 105 105 120 210 315 315

The degrees of irreducible characters of 2_1‘_+6.L3(2) are given by [2, Table X],
and moreover, both N(C(5)) and N(C(6)) have exactly one block, the principal
block. It follows by Table 13 and [2, Table X] that

(16 if d =10,
4 ifd=29,
2 ifd=S38,
k(N(C), By,d) = 12 ifd=7,
y ifd=6,
1 ifd=4,
{0 otherwise,
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where C € {C(5),C(6)} and (z,y) = (6,1) or (2,0) according as C = C(5) or
C(6).

By CAYLEY, the degrees of irreducible characters of N{C(7)) ~ 22.26.5;.53
and N(C(8)) ~ 2.23.2°.53 are given by Tables 14 and 15.

Table 14. The degrees of characters of Irr(22.26.53.53)

& & & & & & & Ls Lo Lo &1 &2 &1z &1 s
1 1 1 1 2 2 2 2 3 3 3 3 4 6 6

&16 &7 &1z &10 E20 E21 f22 €23 C2a a5 a6 Lar Los 2o &30
6 6 9 9 9 9 9 9 9 9 12 12 12 12 12

€31 €32 €33 &34 &35 E36 E37 €38 €39 Eao
18 18 18 18 24 24 36 36 36 36

Table 15. The degrees of characters of Irr((2.22.2%).53)
& & &3 b & L &7 L & Lo & &z &3 e s
1 1 1 1 2 2 3 3 3 3 3 3 3 3 3
16 €17 &1 f19 Ca0 &21 L2z 23 €2a G5 fas for L2s €20 €30
3 3 3 4 4 4 4 6 6 6 6 6 6 6 6

€31 €32 €33 €34 &35 36 €37 €38 €30 Gao f41 4o a3 Eaa &5
6 6 8 8 8 8 12 12 12 12 12 12 16 24 24

Moreover, the principal block is the only block of N(C(7)) and N(C(8)). It
follows that

(16 if d =10,
12 ifd=29,
10 ifd=38,
k(N(C), By,d) = w ifdeT
ifd=6,
L0 otherwise,

where C € {C{(T7),C(8)}, (u,v) = (2,0) or (6,1) according as C = C(7) or
C(8).

By CAYLEY, the degrees of irreducible characters of N{C(2)) ~ 2.55(2) are
given by Table 16.
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Table 16. The degrees of characters of Irr(2.55(2))

&1 & & & & & &1 & o & & &2 &3 &1e G5
1 7 8 15 21 21 27 35 35 48 56 64 64 70 84
16 €17 €18 €19 €20 a1 &22 €23 €2a Eo5 &26 Ear €28 &29 &30
105 105 105 112 112 120 120 168 168 189 189 189 210 210 216
€31 €32 €33 &34 &35 £36 €37 €38 &30 Ca0 €u1 Ca2 a3
280 280 280 315 336 378 405 420 448 512 512 560 720

By Lemma 6.9 of Dade [7], k(N(C), B1,d) > 1 for some radical chain C implies
that the final subgroup of C is conjugate to some defect group of D{B;) = 2.
Thus C =¢ C(2) or C{1). Since Dade’s conjecture for the cyclic blocks has
an affirmative answer, it follows that k(N(C(1)), B1,d) = k(N(C(2)), By, d) for
all integers d. In particular, by (2D) (b), Irr(N(C(2)), B1,d) = 2 or 0 accord-
ingasd =1ord# 1. Since N(C(2)) has exactly two irreducible characters
&0 and &y of defect 1, it follows that Irr(N(C(2)), B1,1) = {€40,&41}. Since
N(C(2)) = N(D(By)), it follows by Brauer’s First Main Theorem that N(C(2))
has a unique block b; inducing By. Thus Irr(b1) = {£40, 41}, since each charac-
ter of Irr(by) is a character of Irr(IN(C(2)), B1,d) for some d. This implies that
Irr(Bo(N(C(2)))) = Irr{( N(C(2)))\ Irr(b1). It follows by Table 16 and [6, p.135]
that

16 if d = 10,

4 ifd=29,

2 ifd=8§,
k(N(C),Bp,d)=< a ifd=T,

b if d=6,

3 ifd=4,

0 otherwise,

where C € {C(1),C(2)} and (a,b) = (6,1) or (10,6) according as C = C(1) or
C(2). Thus (4B) follows by (3C) (a), (4.1) and

8
3 (1) CDIK(N(C)), Bo,d) = 0.

Jj=1

This completes the proof.
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