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A B S T R A C T  

This paper is part of a program to study Alperin's weight conjecture and 
Dade's conjecture on counting ordinary characters in blocks for several 
finite groups. The classifications of radical subgroups and certain radi- 
cal chains and their local structures of the simple Conway's third group 
have been obtained by using the computer algebra system CAYLEY. The 
Alperin weight conjecture and the Dade final conjecture have been con- 
firmed for the group. 

I n t r o d u c t i o n  

Let G be a finite group, p a prime and B a p-block of G. Alperin in [1] conjectured 

that the number of B-weights should equal the number of irreducible Brauer 

characters of B. Dade in [7] has presented a conjecture exhibiting the number of 

ordinary irreducible characters of a fixed height in B, in terms of an alternating 

sum of similar integers for p-blocks of some local subgroups of the group G. By 

Dade [7], his final conjecture needs only to be verified for finite non-abelian simple 

groups and is equivalent to the ordinary conjecture whenever a finite group has 

a trivial Schur multiplier and outer automorphism group. In this paper we verify 

the Alperin weight conjecture and the Dade ordinary conjecture, and so the final 

one, for the simple Conway's third group. 

Most of the calculations were carried out using the CAYLEY computer system 

[4]. In Section 1, we fix our notation and state the two conjectures. In Section 

2, we classify radical subgroups, determine their local structures and verify the 
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Alperin weight conjecture. In Section 3, we do some cancellations in the alter- 

nating sum when p = 2 or 3, and then determine radical chains and their local 

structures. In the last Section, we verify the Dade conjecture. 

1. T h e  A l pe r i n  a n d  D a d e  con jec tu res  

Let R be a p-subgroup of a finite group G. Then R is radical  if Op(N(R))  = R, 

where Op(N(R))  is the largest normal p-subgroup of the normalizer N(R)  = 

NG(R).  Denote by Irr(G) the set of all irreducible ordinary characters of G, and 

let Blk(G) be the set of p-blocks, B E Blk(G) and ~o C I r r (N(R) /R) .  The pair 

(R, ~) is called a B-weight  if ~o has p-defect 0 and B(~)  a = B (in the sense 

of Brauer), where B(~) is the block of N(R)  containing ~. A weight is always 

identified with its G-conjugates. Let W(B) be the number of B-weights, and 

i(B) the number of irreducible Brauer characters of B. Alperin conjectured that  

I/Y(B) = ~(B) for each B 6 Blk(G). If a defect group D of B is cyclic, the Alperin 

conjecture follows by Theorem 9.1 of [7]. Thus we may suppose D is non-cyclic. 

Given a p-subgroup chain 

(1.1) C: P0 < P1 < "'" < Pn 

of a finite group G, define ICI = n, Ck: Po < P1 < "'" < Pk, C(C) = CG(Pn), 

and 

(1.2) N(C)  = No(C)  = N(Po) n NG(P1) A.- .  N Nc(P,~). 

The chain C is said to be radica l  if it satisfies the following two conditions: 

(a) P0 = Op(G) and (b) Pk = Op(g (vk ) )  

for 1 < k < n. Denote by ~ -- 7~(G) the set of all radical p-chains of G. For 

B e Blk(G) and integer d > 0, let k(N(C), B, d) be the number of characters in 

the set 

(1.3) Irr(N(C), B,d)  = {¢ 6 I r r (g(c) ) :  B(¢) c = B, d(~b) = d}, 

where d(¢) is the defect of ¢ (see [7, (5.5)] for the definition). Dade in [7] gives 

the following conjecture. 

O R D I N A R Y  C O N J E C T U R E :  I[ Op(G) = 1 and B is a p-block of G with defect 

d(B) > 0, then for any integer d _> 0, 

(1.4) ~ (-1) Icl k ( N ( C ) , B , d )  = O, 
C6T~/G 

where Ti/G is a set of representatives for the G-orbits in 7Z. 
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2. R a d i c a l  s u b g r o u p s  a n d  weights  

Let O(G,p) be a set of representatives for conjugacy classes of radical subgroups 

of G. For H , K  < G, we write H <_c K if x - lHx  < K; and write H Ea ~(G,p) 
if x - l H x  E a2(G,p) for some x c G. We shall follow the notation of [6]. In 

1+2-~ is an extra special group of order pl+2-y wi th  exponent p or particular, t,+ 
plus type according as p is odd or even. If X and Y are groups, we use X.Y 
and X : Y to denote an extension and a split extension of X by Y, respectively. 

Given n C N, we use Ep, or simply pn to denote the elementary abelian group 

of order pn, Z~ or simply n to denote the cyclic group of order n, and D2n to 

denote the dihedral group of order 2n. 

Let G be the simple Conway's third group Co3. Then 

IG[ = 21° • 37- 53 . 7 . 1 3 . 2 3 ,  

and we may suppose p c {2, 3, 5}, since both conjectures hold for a block with a 

cyclic defect group by [7]. 

We denote by Irr°(H) the set of ordinary irreducible characters of p-defect 0 

of a finite group H. Given R C (I)(G,p), let C(R) = Cc(R) and N = No(R).  If 

Bo = Bo(G) is the principal p-block of G, then by [3, (1.3)], 

(2.1) W(Bo) = E IIrr°(N/C(R)R)h 
R 

where R runs over the set ~(G,p)  such that the p-part ]C(R)R/RIp of [C(R)R/R I 
is 1. The character table of N/C(R)R can be created by CAYLEY, so that we 

can find the number [Irr°(N/C(R)R)[. 
In the tables of Propositions (2A), (2B) and (2C), if the p-part [C(R)R/RIp 

is not 1, then by (2.1), there exist no B0-weights of the form (R, 99), so that  we 

omit the number I Irr° (N/C(R)R)[. 

(2A): The non-trivial radical 5-subgroups R of Co3 (up to conjugacy) are 

R C(R) N ]Irr°(N/C(R)R)] 

5 5 × A5 (5 × A5).4 

5F 5 5 +2.(3 × s).2 is. 

Proof." The proof of (2A) follows by Lemmas 5.7 and 5.14 of [9]. 

The calculations in the Propositions (2B) and (2C) are carried out using the 

CAYLEY computer system. The approach using CAYLEY to classify radical p- 

subgroup classes is explained in [3]. We first choose a Sylow p-subgroup S (using 
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CAYLEY), and then calculate the subgroup lattice of S. For each subgroup R in 

the lattice, we calculate the normalizer N(R) of R in G and the normal subgroup 

classes of N(R). If the largest order of the p-subgroups in the normal subgroup 

classes of N(R) is the same as the order of R, then R is a radical subgroup of G. 

For a p-group H, CAYLEY can test whether or not H is abelian (using the centre 

of the subgroup) and elementary abelian. In the Propositions (2B) and (2C), we 

also calculate the radical p-subgroups of some maximal subgroups; these radical 

subgroups will be used in Section 3 to classify the radical p-chains. 

(2B): The non-trivial radical 3-subgroups R of Co3 (up to conjugacy) are 

R C(R) N I Irr°(N/C(R)R)I 

3 3 x L2(8): 3 $3 × L2(8): 3 
1+4 3 3 1 + 4 : 4 S 6  4 + 
35 35 35:(2 × Mll)  2 

S 3 S : (2 × SD24) 14, 

where S E Sy13(Co3 ) and SD24 is a semidihedral group of order 24. 

Proof: Given i E {1, 2, 3}, let M~ be a maximal subgroup of G = Co3 such that  

M1 ~- $3 x L2(8): 3, M2 - 3~_+4 : 4S6 and M3 -~ 35:(2 x Mll)  (see [6, p. 134]). 

If T is an elementary 3-subgroup of G, then by [9, p. 73], N(T) <_ Mi for some 

i. If R is a non-trivial radical 3-subgroup of G, then f~I(Z(R)) is elementary 

abelian and N(R) < N(~tl (Z(R))), since ftl(Z(R)) is a characteristic subgroup 

of R. Thus we may suppose R E ff~(Mi, 3) for some i and N(R) = NM,(R). 
Using CAYLEY, we can calculate the normalizers of all the 3-subgroups of G 

(see the remark before Proposition (2B)). If M is a normalizer of a subgroup of 

order 3 such that  M has the same composition factors, which can be obtained by 

CAYLEY, as that  of M1, then M is conjugate to M1. Similarly, since M2 and 

M3 are normalizers of some 3-subgroups, we can easily identify them from the 

normalizers of 3-subgroups of G. 

Let M = M1, 3 = O3(M1) and S' E Syl3(M1 ). Apply the approach described 

before (2B) to M. We have that M has two radical 3-subgroups with orders 3 

and IS~I. Note that  a Sylow 3-subgroup is always a radical subgroup and O3(M) 

is a subgroup of each radical 3-subgroup of M (cf. [11, Lemma 2.1]). Thus we 

may suppose 

ff~(S3 x L2(8): 3,3) = {3, S'}. 

Using CAYLEY, we find that the normalizers NM1 (S') and NG(S') have different 

orders, so that  NM~(S') ~ N(S'). Since M is maximal in G, NG(3) = M = 

NM(3) and so we may suppose 3 E @(G, 3). 



Vol. 112, 1999 ALPERIN AND DADE CONJECTURE 113 

Let 31+4 = O3(M2) and 3 5 = O3(M3). Replace M1 by M2 or M3 in the case 

when M = M1. Note that  a Sylow 3-subgroup of M2 and M3 is also a Sylow 

3-subgroup of G. Thus by CAYLEY, 

ff2(M2,3)={3~_ +4,S} and @(M3,3)--{35,S}, 

and using CAYLEY, we have NM,(R) = N(R) for each R E ~(Mi,  3). Thus 

we may suppose ~(Mi,3) C (I)(G, 3) for i = 2,3 and each non-trivial element 

of ~(G, 3) is given (up to conjugacy) by (2B). In addition, I Irr°(4S6)l = 4, by 

CAYLEY. Since f Irr°(Mll)l = 1 (see [6, p. 18]), it follows that I Irr°(M3/35)t = 2. 

I fQ • Syl3(Mll), then NMll(Q)/Q ~- $D24 (cf. [3, (2A)]). Since ]N(S)/S[ = 25, 

it follows that  N(S) ~- S: (2 × SD24) and [Irr°(N(S)/S)[ = 14. 

(2C): The non-trivial radical 2-subgroups R of Co3 (up to conjugacy) are 

R C(R) N/C(R)R I Irr°(N/C(R)R)] 

2 2.sd2)  1 

2* 2* × M12 1 
22 22 x $5 3 

2 3 2 3 × $3 F~ 
2 4 2 4 As 1 

22 .24 22 $6 1 

2~_ +6 2 L3(2 ) 1 
23.24 23 L3(2) 1 
22 .26 22 F22 .$3 1 

2.23 .25 2 $3 1 
(2.23.25) * 2 $3 1 

2.2 4 .2 4 2 $3 1 

(2.24.24) * 2 $3 1 

S 2 1 1, 

where S C Sy12(Co3), H* denotes a non-conjugate subgroup of Co3 which is 

isomorphic to H, and F~ denotes the Frobenius group with kernel E,~o and 
complement Zm. 

Proof: If 1 < i < 6, then by [6, p. 134], G = Co3 has maximal subgroups 3 / / such 

that  M1 ~- 2.$6(2), M2 -~ 24.As, M3 -~ 2×M12, M4 -~ 22.[27.32].$3, Ms - A4×$5 

and M6 -~ $3 x L2(8): 3. Suppose 1 ¢ R E ~(G, 2) and W = ~tl(Z(R)), so that  

N(R) < N(W). As shown on page 68 of [9] we may suppose N(R) <_ N(A) 
for some 2A-pure or 2B-pure elementary abelian 2-subgroup A of G. Indeed, 
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let t and s be the number of involutions of classes 2A and 2B, respectively. 
Since G has exactly two classes of involutions, it follows that t + s ÷ 1 = IWI 

is a power of 2. In addition, let X (resp. Y) be the subset of W consisting 

of involutions of class 2A (resp. 2B) such that the product of any two distinct 

involutions of X (resp. Y) is an involution of class 2A (resp. 2B). If X ¢ ~, then 

X fienerates a 2A-pure elementary abelian 2-subgroup A and N(W) <_ N(A). 
Similarly, if Y ¢ 0, then Y generates a 2B-pure elementary abelian 2-subgroup 

A and N(W) <_ N(A). Suppose Z = Y = 0. Let {x l , . . .  ,xt} and {Yl,. . .  ,Y~} 

be the subsets of W consisting of involutions of classes 2A and 2B, respectively. 

Since the product of any two distinct involutions of class 2A is in class 2B and the 

product of any two distinct involutions of class 2B is in class 2A, it follows that  

Xl~JiYj is either 1 or an involution of class 2A for any i ~ 1 and 1 < j ~ s, and 
moreover, xlxiyj = xlxi, yj, if and only i f / =  i r and j = jr. Thus t + l  ~ ( t -  1)s. 

Similarly, s + 1 > (s - 1)t. Since t + s + 1 is a power of 2, it follows that either 

t -- 1 or s = 1. In the former case W has a unique involution of class 2A, so 

that  N(W) < N(2A). In the latter case N(W) < N(2B). It follows that  we 

may suppose N(W) ~ N(A) for some 2A-pure or 2B-pure elementary abelian 

2-subgroup A of G 

By Lemmas 5.8, 5.9 and 5.10 of [9], N(A) < Ms for 1 < i < 5, except when A 
is a 2B-pure and A -~ 23, in which case N(A) < Ms (see the remark after Lemma 

5.10 of [9]). Thus N(R) <_c Mi for some i, and we may suppose R E ~(Mi, 2) 

satisfying N(R) = NM, (R). 
Using CAYLEY, we can identify the maximal subgroups Mi for 1 < i < 5 with 

the normalizers of 2-subgroups of G, and M8 with the normalizer of a 3-subgroup. 

Applying the approach described before (2A) to each maximal subgroup Mi, we 

can classify the radical 2-subgroups of Ms. For each radical subgroup R, the 

central series of R which can be calculated by CAYLEY gives the structure of R. 

(1) Let 2 = 02(M1). Using CAYLEY, we have that  

(2.2) (I)(M1,2) = {2, 92 ,)4 ,)1+6 ,)2 ,)6 . ~  , .+  , . . ~  , 2.23.25, (2.23.25) *, (2.24.24) *, S}, 

where S E Syt2(G ). By CAYLEY, NMI(R) = N(R) for each 

R • ~(M1,2)\{22.26} and NM1(22.26) = 22.26.F22.2. 

(2) 24 = O2(M2). By CAYLEY, 

(2.3) eP(M2, 2) = {24, 2~_ +6, 23.24, 22.26, 2.23.25, (2.23.25) *, (2.24.24) *, S}, 

NM2(R) = N(R) for each R • ¢(M2, 2)\{22.26} and NM2(22.26) = 22.26.S~.$3. 
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(3) Let 2* = O2(M3). Then 2* is generated by a 2B-element. By [3, (2D)], 
~(M12, 2) = {1, ~2, E4, E4.E8, 2~_ +4, Q}, where Q E Sy12(M12 ). Thus 

91+4 93 93 23.23.2}, (2.4) ~(M3,2) = {2",22 , 23 ,2 x . +  , . . .  , 

where 22 = 2* x Z2, 23 = 2* x E4, 23.23 = 2* x E4.Es, and 23.23.2 = 2 x Q. 

Moreover, by CAYLEY, NM3(R) 7 ~ N(R) for R C ~5(M3,2)\{2"}. 
(4) Let 22.26 = O2(M4). By CAYLEY, 

(2.5) ffP(M4, 2) = {22 .26, (2.23.25) * , 2.24.24, (2.24.24) * , S}, 

and moreover, NM4(R) = N(R) for all R E ~P(M4,2). 
(5) Let 22 = O2(/1//5). Since ~($5, 2) = {1, Z2,/?]4, Ds}, it follows that 

(2.6) ~(Mh, 2) = {22, 23, (24) *, 22 x Ds}, 

where 23 = 22 xZ2 and (24) * = 22 xE4. Moreover, by CAYLEY NMh(R) # N(R) 

for each R • ¢(M5,2)\{22}. 

(6) Finally, if Z2 • Sy12($3) and Q • Syl2(M6), then by CAYLEY, 

~(M6, 2) = {7_¢, 23, Q} 

and moreover, NMs (R) ~ N(R) unless R = 23. 

Thus the nontrivial radical subgroups are given by (2C), and their normalizers 
and centralizers are obtained by CAYLEY. 

Denote by D(B) a defect group of a block B, Irr(B) the set of irreducible 
ordinary characters of B, and k(B) = I Irr(B)[. 

(2D): Let G = Co3 and let Blk°(G,p) be the set of p-blocks with a non-trivial 

defect group. 

(a) If p = 5 or 3, then Blk°(G,p) = {Bo,BI} such that D(B1) ~ Zp. In the 

notation of [6, p. 135] 

Irr(B1) = { {X5,X12,X29,Xa5,X39} ifp = 5, 
{X31, X32, X36} i f  p = 3. 

(b) Ifp = 2, then Blk°(G, 2) = {B0, B1, B2} such that D(B1) = a  2, D(B2) =a 

23 and g(B2) = 5. In the notation of [6, p. 135], Irr(B1) = {X33, )C34} and 

Irr(B2) = {X6, X7, X18, X19, X29, X32, X3S, X39}. 
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Moreover, 

4 if p - -5 ,  ~1 8  if  p = 5 ,  

(2.7) ~(B1) = 2 if p = 3 ,  e(Bo) = 120  if p = 3 ,  
1 if p = 2 .  10 if p = 2 .  

Proof'. If B E Blk(G,p) is non-principal with D = D(B), then Irr°(C(D)D/D) 
has a non-trivial character, so by (2A), (2B) and (2C), D EG {5, 3, 2, 23}. More- 

over, for each such D, I Irr°(C(D)D/D)[ = 1, so G has exactly one block with a 

defect group D. 

Using the method of central characters on elements of classes 2B, 3C and hA, 

we have Irr(B) given as in (2D). If D(B) is cyclic, then g(B) is the number of 

B-weights. Thus / (B1)  is given by (2.7). 

Suppose p = 2 and B = B2. Since B2 is non-principal, it follows that  

D(B2) = v  2 or 23 . I fD(B2)  =G 2, then k(B2) < 2 (cf. [8, p. 170]). Since 

k(B) = 8, it follows that D(B) =G 23. Let K = C(2") = 2* x M12, and let 

b C Blk(K) such that b G = B. Then D(b) ~_ 23 and b = b0 × bl, where b0 is the 

principal block of 2* and bl E Blk(M12) with D(bl) ~- E4. By [10, Theorem 8.2], 

M12 has exactly one block bl with a defect group E4 and g(bl) = 3. Thus K has 

exactly one block b such that b c = B, and moreover,/(b) = 3. As shown on page 

72 of [9], 23 is 2B-pure, so that k(B) = t~(B) + 2(5) and ~(B) = 5. 

Finally, let l(G) be the number of p-regular conjugacy G-classes. Then g(B0) 

can be calculated by the following equation due to Brauer, 

g(G) = U g(B) + [ Irr°(G)[. 
BEBlk°(G,p) 

This completes the proof. 

(2E): Let G = Co3 and B a p-block of G with a non-cyclic defect group. Then 
the number of B-weights is the number of irreducible Brauer characters of B. 

Proof." If B -- /30, then (2E) follows by (2.1) and (2A)-(2D). Suppose p -- '2 

and B = B2. Let R = D(B2) = 23 , and let O = 01 x 02 be a character of 

Ca(R) = 23 x $3, where 91 is the trivial character of R and 02 C Irr(S3) is the 

character of degree 2. Since 9 is uniquely determined in Irr(Cc(R))  by its degree, 

it follows that  N(O) = N(R). By (2C), N(R) -- (23 x S3).F~. Let F~ = (a) ~ (T), 

where ]hi = 7 and IT[ -- 3. Since a stabilizes 9, it follows by Clifford theory that  

0 has 7 extemsions to H = (23 x S3).(a I. Since ~- stabilizes 0 and ~- normalizes 

(a), it follows that  T permutes these extensions. Since T has order 3 (modulo 

H), it follows that  each (T)-orbit on the extensions'Contains either one or three 
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characters.  But  0 has only 7 extensions, so at least one @)-orbit  contains only 

one character  0'. Thus O' has an extension to N(R) = <H, ~-}, so tha t  0 has an 

extension to N(R). By [3, (1.4)], 142(B2) = I Irr°(N(O)/C(R)R)l = I Irr(F~)l  = 5, 

since F 3 has 3 linear characters and 2 irreducible characters of degree 3 (cf. [5, 

Proposi t ion  3]). 

3. R a d i c a l  c h a i n s  

The  nota t ion and terminology of Sections 1 and 2 are continued in this section. 

Let G = Co3, C • 7~(G) and g ( c )  = Na(C). 

(3A):  Follow the notation of(2A).  The radical 5-chains C of G (up to conjugacy) 
are 

c N(C) C N(C) 

C ( 1 ) :  1 G C ( 2 ) :  1 < 5 (5 x A5).4 

C ( 3 ) :  1 < 5 < 5 2 (5 x F52).4 C ( 4 ) :  1 < 5~_ +2 5~_+2.24.2, 

where 52 C Sy15(5 x A5). 

Proof: Suppose C is a radical 5-chain given by (1.1) with ICI _> 1, so tha t  

P0 = 1. By definition, P1 is a radical subgroup of G, and so by (2A), we may 

suppose P1 = 5 or 5~_ +2. If P1 = 5 2  2, then ICI = 1 and C = a  c ( 4 ) .  If  P1 = 5, 

then N(C1) = N(P1) = (5 x As).4, so tha t  either C = a  C(2) or ICI > 2. If 

ICI _> 2, then by definition, P2 is a radical 5-subgroup of N(P1) and P2 ¢ P1, so 

tha t  P2 = 52 C Syl5(N(P1)) ,  ICI = 2 and C = ~  C(3). 

Suppose C = C(3). Then  N(C) = NN(S)(52) = (5 x NAs(X)).4, where X is 

a Sylow 5-subgroup of A5. Thus  N(C) ~_ (5 x F52).4, since INAo(X)I = 10 and 

NA5 (X) contains 2 linear characters and 2 irredpeible characters  of degree 2 (of. 

[5, Proposi t ion 3]). 

In the nota t ion of (2B), define the radical 3-chains C(i) for 1 < i < 6 as follows: 

C ( 1 ) :  1 C ( 2 ) :  1 < 3 

C ( 3 ) :  1 < 3 < S' C ( 4 ) :  1 < 3~_ +4 

(3.1) C(5) : 1 < 3 5 < S C(6) : 1 < 3 5 , 

where S' E Syl3(S3 x L2(8): 3). 

(3B):  

(a) Let T~°(G) be the G-invariant subfamily of Ti(G) such that 7Z°(G)/G = 
{C(i) : 1 < i < 6}. Then 

(-1)ICIk(N(C),Bo,d) = ~ (-1)PC'k(N(C),Bo,d) 
cer~(a)/G cerao(c)/a 
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for all integers d >> O. 
(b) Suppose C is a chain given by (3.1). Then 

Proof." 

C N(C) C N(C) 

C(1) G C(2) $3 x L2(8): 3 
C(3) S'.22 C(4) 3~_+4 : 4S6 

C(5) S :  (2 x $D24) C(6) 35 : (2  x M n ) .  

Let C' : 1 < S and C" : 1 < 3~_ +4 < S. By CAYLEY, 

N(C') = N(C") -= N(S). 

If ¢ • I rr(N(C') ,  B, d) for some block B and integer d, then by (1.3), ¢ • 
I rr(N(C')) ,  B(¢)  C = B and d(¢) = d. Since g ( c ' )  = N(C"), it follows that 
~) • I r r (N(C")) ,  the block B(¢)  is also a block of g ( c " )  and d(¢) = d. By 

(1.3), ¢ • I rr(Y(C"),  B, d). Conversely, I r r ( g ( c " ) ,  B, d) C_ Irr(N(C') ,  B, d), so 
that 

Irr(g(c') ,  B, d) = Irr(g(c ' ) ,  B, d). 

Thus 

and 

k(N(C') ,  B, d) = k(N(C"),  B, d) 

( -1 )  IC'l k(N(C') ,B,d) + ( -1)  [c''l k(N(C"),B,d) = 0, 

so that we can delete C' and C" in the sum (1.4). 

Suppose C is a radical 3-chain given by (1.1). Then P1 is radical in G and we 
may suppose P~ • q)(G, 3). If PI = 3, then by (2B), 

N(C1) -- N(P1) -- $3 x L2(8): 3 

and moreover, ~(N(C1),3)  = {3, S'}. Thus either C = c  C(2) or ICI _> 2. In 

the latter case we may suppose P2 • O(N(P1),3),  since P2 is radical in N(PI), 
Thus P2 =a S' and N(C2) = NN(p1)(S'). Since S' is also a Sylow 3-subgroup 

of N(C2), it follows that (I)(N(C2),3) = {S'} and so C = C2 = c  C(3). By 
CAYLEY, 

N(C(3)) = S'.22. 

Suppose P1 = 3~- +4. As shown in the proof of (2B) we have 

•(N(P1), 3) = {3~_ +4, S}, where S • Syl3(G ). 
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Either C = c  C(4) or ]C] _> 2. In the latter case P2 = c  S and C = a  C". 
Similarly, if P1 = 3 5, then either 6 = a  6(6) or 6 = a  C(5). Finally, if P1 = c  S, 
then C = a  C'. This proves (3B) (a). The proof of (3B) (b) follows from that of 

(2B). 

Following the notation of (26), we define radical 2-chains: C(i) for 1 < i < 16 
as follows: 

6 ( 1 ) : 1  6 (2 ) :  
C(3) : 1 < 2 < 22.26 6 ( 4 )  : 

C(5) :  1 < 24 < 2~_ +6 C(6):  

C(7) : 1 < 24 < 22.26 C(8) : 

C(9) : 1 < 2* < 23.23 C(10) 

6(11) : 1 < 2" < 2 x 2~_ +4 6(12) 

6(13) : 1 < 2* < 23 6(14) 
(3.2) 6 ( 1 5 )  : 1 < 2 3 < (24) * 6 ( 1 6 )  

1 < 2  
1 < 22.26 

1 < 2 4  

1 < 24 < 22.26 < (2.23.25) * 

: 1 < 2 "  
: 1 < 2 "  < 2 3 < ( 2 4 )  * 
: 1 < 2* < 23.23 < 23.23.2 

: 1 < 2 3  , 

(24) * E Sy12(N(23)). We have the 

for all integers d > 0 and for each block 

(b) Let C be a chain given by (3.2). Then 

Prooi~ 

(3.3) 

C N(C) C N(C) 

c(1) Co3 6(2) 2.sd2) 
c(3) 22.26.H .2 6(4) 22.26.F  .S3 
C(5) 2~_+6.L3 (2) 6(6) 24.As 
6(7) 22.26.$3.$3 6(8) (2.23.25) *.$3 

C(9) 23.23.$3 C(10) 2* × M12 
C(ll) 2 x 2~_+4.$3 6(12) 22 x A4 
C(13) 2 x A4 x $3 C(14) 23.23.2 
6(15) (24)*.F 3 6(16) (23 x S3).F 3 

(a) Suppose C' is a radical 2-chain such that 

C ' : I  <P[ < . . . < P '  
m "  

Let C E 7~(G) be given by (1.1) with P1 E @(G, 2). 

B with a non-cyclic defect group. 

where 23.23, 2 × 2~_ +4, 23.23.2 G ff2(M3, 2), and 

following proposition: 

(36) :  
(a) Let 7E°(G) be the G-invariant subfamily of ~(G) such that 7E°(G)/G = 

{C(k): k = 1, 2 , . . . ,  16}. Then 

E ( -1)  Icl k ( g ( c ) ,  B, d) = E ( -1)  Icl k(N(C),  B, d) 
cen(G)/G Ceno(G)/G 
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CASE (1): Let R E ~(M1, 2)\{2, 22.26}, so that by the proof (2C) (1), R E 
~5(G, 2). Let X(R) and y(R)  be subsets of radical chains such that  

(3.4) 
x ( R )  = ( c '  e n / c  : P; = R}, and 

Y ( R )  = (C '  e n / C  : Pi = 2, P~ = R}.  

By the proof (2C) (1), any two distict subgroups of/F(M1,2)\{2, 22.26} are not 

conjugate in G, so that any two distinct chains of 2( or 32 are not G-conjugate. 

Define Ad+(R) and Ad°(R) be subsets of T¢ consisting of all G-conjugates of 

chains in A'(R) and Y(R), respectively. Then Ad+ (R) and Ado (R) are G-invariant 

with X(R) and Y(R) as their representative sets for G-orbits. For C'  E X(R) 

given by (3.3) with P~ -- R, define 

(3.5) ~(c'):  1 < 2 <  P; = R < P ;  < . . .  < P ' .  

Then g(C') E Ad°(R) and we may suppose g(C') E y(R).  As shown in the 

proof of (2C) (1) N(R) = g(1  < 2 < R), so that by (1.2), Y(C')  -- N(g(C')). 

Conversely, if g(C') : 1 < P~ = 2 < P~ = R < P~ < ... < P~ E y(R),  then 

C'  : 1 < P~ = R < P~ < .-- < P~ is a chian of X(R). So the map g from X(R) 
to y (R)  is onto. Since ¢(M1,2)\{2, 22.26} is a subset of ~(G, 2), the map g is a 

bijection. Extend the map g to a bijection, which is also denoted by g between 

Ad+(R) and Ad°(R). Since N(C') = N(g(C')), it follows by (1.3) that  for any 
block B and for any integer d > 0, I r r (g (c ' ) ,  B, d) = Irr(N(g(C')), B, d), so that  

(3.6) k(N(C'),  B, d) = k(N(g(C')), B, d). 

Since (-1)tc ' l  k(N(C' ) ,B ,d)+ (-1) Ig(C')l k(N(g(C')),B,d) = 0 for C' C X(R), 
we can delete the chains of Ad+(R) and Ad°(R) in the right hand side of (1.4). 

Thus we may suppose 

c ¢ [_J (Ad+(R) u Ad°(R)). 
Re'~( M1,2) \ { 2,22.26 } 

In particular, 

P1 ¢ O(M1,2)\{2, 22.26 } = (22.24, 2~_ +6, 2.23.25, (2.23.25) *, (2.24.24) * , S}, 

and if P1 = 2, then C =o C(2) or P2 = 22.26. 



Vol. 112, 1999 ALPERIN AND DADE CONJECTURE 121 

CASE (2): Replace R by 2.24.24 • ~(M4,2) and 2 by 22.26 • ~(M4,2) in the 
definition (3.4), and repeat the proof above. Then we may suppose P1 ¢ 2-24.24, 
and if P1 = 22.26, then P2 ¢G 2.24.24. By CAYLEY, NM~ (22.26) = N(C(3)) -~ 

22.26.F~.2, and N(C(3)) has 4 radical 2-subgroups. A Sylow 2-subgroup Q of 
M4/22.26 ~- F~2.5:3 is elementary abelian of order 4 and by (2.5), the preimage 
in M4 of a subgroup of Q is a radical subgroup of M4. In particular, each radical 

subgroup of N(C(3)) is a radical subgroup of M4. Using CAYLEY, we have that  

(b(22.26.F~2.2, 2) -- {22.26, (2.23.25) *, (2.24.24) *, S} C 6P(M4, 2) 

such that NN(C(3))(R) -= N(R) = NM4(R) for R • ~(22.26.F~2.2, 2)\{22.26}. 
Let f~ = {(2.23.25) *, (2.24.24) *, S} C_ ~(22.26.F~2.2, 2). Given Q • ft, similar 

to Case (1) we define G-invariant subfamilies g+(Q) and £0(Q) of 7~(G), such 
that the representatives for G-orbits of g+(Q) and gO(Q) are given as follows: 

(3.7) 
g+(Q)/G = {C' e ~/G: P~ = 22.26 , P~ = Q}, and 

g°(Q)/G = {c '  • n /G:  P; = 2, P~ = 22.26, P~ = Q}. 

If C' C g+(Q)/G is given by (3.3) with P~ = 22.26 and P~ = Q, then 

g(c ' ) :  t < 2 < P; = 22.26 < Pi  = Q < Pi  < . . .  < P "  

is a chain of gO(Q) and moreover, 9 induces a bijection between g+(Q)/G 
and g°(Q)/G (see the proof of Case (1)). Since N(22.26) = M4 and NM4(Q) = 
N(1 < 2 < 22.26 < Q) = N(Q), it follows by (1.2) that N(C') = N(g(C')). Thus 

(3.6) holds for each C' e g+(Q)/G. A proof similar to that of Case (1) shows 
that we may suppose 

(3.8) C ~ U (g+(Q) u £0(Q)). 
QE~ 

In particular, if P1 ---- 22-26, then by (2.5), C =G C(4) and moreover, if P1 = 2 
and P2 = o  22.26, then C = c  C(3). 

By Case (1), we may suppose P1 ¢ O(M1,2)\{2, 22.26} and by Case (2) above 
we may suppose P1 ¢ 2.24.24. So by (2C), we may suppose 

P1 e ~(G, 2)\({2.24.24 } U ~(M1,2)\{2, 22.26}) = {2, 2*, 22, 23, 24, 23.24, 22.26}, 

and moreover, if P1 C {2, 22.26}, then by Cases (1) And (2), 

c eG {c(2), c(3), c(4)}. 
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CASF, (3): Let 3,t+(23.24) and A4°(23.24) be defined as in Case (1) with R 
replaced by 23.24 and 2 by 24. A proof similar to that of Case (1) shows that 
(3.6) holds for C' • Jt4+(23.24), so that we may suppose P1 # 23.24 and if 
Pa = 24, then P2 # a  23.24. Let {2.23.25, (2.23.25) *, S} be a subset of (I)(M2, 2) 

given by (2.3) and let R • {2.23.25, (2.23.25) *, S}. Using CAYLEY, we can check 
that N(R)  = NM2(R) < N(2~_ +6) = 2~+6.L3(2), so that R • a  ~(N(2~+6),2). 

Applying the approach described before (2B) to the subgroup N(2~_+6), we have 
that N(2~ +6) has exactly 4 radical 2-subgroups, so that 

¢,(2F6.L3(2), 2) = {2_ 1+6, 2.24.25, (2.23.25) *, S} c @(M2, 2), 

and moreover, NN(2~-~)(R ) = NM2(R) = N(R) for all R • @(N(2~_+6),2). Let 

ft' = {2.23:25, (2.23.25)*,S} C_ ~(2~_+6.L3(2),2), and W • ~'.  Similar to the 

proof of Case (1) we define G-invariant subfamilies/C+(W) and K~°(W) of n (G) ,  
such that  

(3.9) 
IC+(W)/G = {C' • n /G:  P~ = 24 , P~ = W} ,  and 

t : ° ( W ) / a  = {C' • n / a :  PI = 24, ~ = 21+ +6, 4 = w } .  

A similar proof to that of Case (1) shows that there is a bijection g between 
/C+(W) and K:°(W) such that N(C')  = N(g(C')) for each C' • IC+(W)/G, so 

that  (3.6) holds and we may suppose 

c ¢ U (r+(W) u ~°(w)). 
W E ~ '  

Thus if P1 = 24, then by (2.3), we may suppose P2 • {2~+6, 22.26, (2-24-24)*}, 

and moreover, if P2 = a  2~- +6, then C = c  C(5). 
By CAYLEY, NM2 (22.26) --~ 22.26.$3.$3, and 

/I)(22.26.$3.$3, 2) = {22.26, (2.23.25) *, (2.24.24) *, S}, 

and moreover, 

NNM2 (22.26) (R) = NM2 (R) = N(R)  

for each R • ~(NM2(22.26),2)\{22.26}. Replace W by (2.24.24) * and 2~_ +6 by 

22.26 in the definition (3.9). We may suppose P2 # c  (2.24.24) *, and if P1 = 24 
and P2 =G 22.~ 6, then P3 ~ 2.24.24. 

Let C' be the chain 1 < 24 < 22.26 < (2.23.25) * < S, and g(C') be the 
chain 1 < 24 < 22.26 < S. Then N(C')  = N(g(C')) = S and so by (1.3), 
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I r r (N(C ' ) ,B ,d )  = I rr (N(g(C ' ) ) ,B ,d)  for any block B and integer d, so that 

(3.6) holds and we can delete the chains C' and g(C') in the sum (1.4). If 

P1 = 24 and ]C I > 2, then P2 E {2}F +6, 22.26}, since P2 ¢ c  (2-24.24) *. Moreover, 

if P2 = a  21+6, then C =G C(5) as shown above; if P2 = c  22-26 and ICI = 2, 

then C =G C(7). If P2 =G 22.26 and ]C] _> 3, then P3 ~ a  (2.24-24) * and so 

we may suppose P3 E {(2.2a.2s)*,S}. Since C is not conjugate to the chain 

1 < 24 < 22.26 < S, it follows that Pa = a  (2.23.25) * and C =G C(8) whenever 

ICI = 3. Suppose moreover, ida = a  (2.23.25) * and ICI > 4. Then P4 = c  S, 

since by the order, S and (2.23.25) * are the only two radical 2-subgroups (up 

to conjugacy) of N((2.23.25)*). In this case C is G-conjugate to 1 < 24 < 

22.26 < (2.23.25) * < S, which is impossible. It follows that if P1 = 24, then 

C e a  {C(5), C(6), C(7), C(8)}. 

CASE (4): If P1 = 2 a, then C = C(15) or C(16), since N(23) ..o (23 x Sa).F 3 

and ~(N(2a),  2) = {23, (24)*}, where (24) * is a Sylow 2-subgroup of N(2a). 

CASE (5): Let C': 1 < 2* < S' andg(C ' ) :  1 < 2* < 2 x 2~_ +4 < S', where 

91+4 S' = 23.2a.2 e q)(M3, 2). Then N(C' )  = N(g(C' ) )  = S' and by (1.3), 2 x ~ +  , 

I r r (N(C') ,  B, d) = Irr(N(g(C')) ,  B, d) for any block B and integer d. So (3.6) 

holds and we may delete the chains C' and g(C') in the sum (1.4). 

By [3, (2D)], NMa(22) = 2 x NM12(Z2) "~ 2 2 × S 5 and by CAYLEY, 

02(NMa(22)) is conjugate to O2(M5) = 22, so we may identify 02(NMa(22)) 

with O2(M5). As shown in the proof of (2C) (5), ~($5,2) = {1, Z2, E4, Ds} and 
¢5(M5, 2) = {2 2, 2 3, (24) *, 22 × Ds}, where 2 3 = 2 2 × Z2 a n d  (24) * = 22 × E4. 

Since NMa(2 2) = 2 2 X Ss _< M5 = A4 x Ss, it follows that 

~(22 × S5,2) = {22 , 23 , (24) * , 22 × Ds} = (I)(Mh, 2). 

Let f~* = {23,(24)*,22 x Ds} C ~P(NM3(22),2). For each R C t~*, R = 22 × R' 

for some R' < $5, NNMa(22)(R) ~-- 22 x N&(R')  and NMh(R) ~ A4 x N&(R ' ) .  
Replace Q by a group Q' in ft*, 22.26 by 22 and 2 by 2* in the definition (3.7). If 

C' E / :+ (Q ' )  and P is the final subgroup of C', then P = 22 × P '  and N(C' )  = 

22 x N' ,  where P '  and N '  are some subgroups of $5. Let g(C') be a chain of 

/:0(Q,) defined similar to the one after (3.7) (with Q replaced by Q', 22.26 by 22 

and 2 by 2*). Then P is also the final subgroup of9(C'  ) and N(g(C' ) )  ~_ A4 x N' .  

Note that  both 22 and A4 have exactly 4 irreducible characters of defect 2, and 

all of them lie in their principal block. So there is a defect-preserved bijection qo 

between Irr(22) = Irr(B0(22)) and Irr(A4) = Irr(B0(A4)). 

If ~ E I r r (N(C') ,  B, d), then ¢ = ~bl x *P2, B(~b) a = B and the defect d(tb) of ¢ 

is d, where ¢1 • Irr(22), ¢2 • Irr(N')  and B(¢)  is the block of Y ( C ' )  containing 
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¢. Since N(C') = 22 × N '  and ¢ E I r r (B(¢) ) ,  it follows tha t  B ( ¢ )  = B o ( 2 2 )  × bl, 

where bl is the block of N '  containing ¢2- If ~*(¢)  = ~v(¢1) x ¢2, then ~*(¢)  is 

an irreducible character  of N(g(C')) = A4 × N' and moreover, ~v* (¢) is a charac- 

ter  of B0(A4) x bl, so tha t  B(~*(¢ ) )  = Bo(A4) × bl. Since B0(22) A4 = B0(A4), 

it follows tha t  B(¢) N(g(c')) = B(~*(¢ ) )  and so B(~*(¢ ) )  c = B (see [8, Lemma 

III.9.2]). Since ~ is a defect-preserved bijection, it follows by the definition 

[7, (5.5)] tha t  ~v* is a defect-preserved injection and ~*(¢)  E Irr(g(g(C')), B, d). 

Conversely, suppose X E Irr(N(g(C')),B,d). Since g(g(C')) = A4 x N', it 

follows tha t  X = X1 x X2 for some X1 E Irr(A4) and )/2 E I r r (N ' ) .  In addition, 

B(X) c = B and d(x)  = d. Thus B(X) = B0(A4) × b2, where b2 is the block of 

N '  containing )i2. Since Irr(B0(A4)) = trr(A4) and ~ is a bijection, there  is a 

character  ¢1 E Irr(22) such tha t  ~(¢1) = X1- I f ¢  = ¢1 × X2, then d(¢)  = d(x)  = 
d and ¢ E Irr(B0(22) × b2), so that  B (¢ )  = B0(22) × 52. Since B(¢) g(g(C')) = 

B0(A4) × b2 = B(X) and since B(X) c = B, it follows tha t  B (¢ )  ° = B and then 

¢ E I r r (N(C ' ) ,  B, d). Thus ~*(¢)  = X and ~* is a bijection. It follows tha t  (3.6) 

holds and we may suppose (3.8) holds for Q' E f}*. Similarly, if C ~ : 1 < 2* < 22 

and g(C') : 1 < 22, then N(g(C')) ~- A4 × $5 and N(C') ~- 22 x $5. Thus  (3.6) 

still holds and we may delete them in the sum (1.4). 

Suppose P1 = 2*. If ]C] = 1, then C = c  C(10) and we may suppose [C I > 2. 

By (2.4) and the proof  in Case (5), we may suppose P2 E {23,2 × 2~_+4, 23.23} 

and moreover,  if P2 = c  2 × 2~_ +4, then [C I = 2 and C = c  C ( l l ) ,  since 

+(NM3(2 x 2~_+4), 2) = {2 × 2~_ +4, S '} 

and 1 < 2* < 2 ×2~_ +4 < S'  is deleted from the sum (1.4). If P2 : o  23 , then 

6 = c  6 (13)  or 6 (12)  according as ICl = 2 or 3, since q~(gMz (23), 2) = {23, (24) * } 

(cf. Case (4)). If P2 = c  23.23, then C = o  C(9) or C(14) according as ]C I = 2 

or 3, since by the order,  @(NM3(23.23), 2) = {23.23, S'}. Hence if P1 E {2*, 22}, 

then  C Ec  {C(i):  i = 9 , . . . , 1 4 } .  

(b) The  proof  of (b) follows easily by tha t  of (a) above or (26) (cf. [3, (2D)]). 

4. The proof of  Dade's conjecture for Co3 

The  nota t ion  and terminology of Sections 2 and 3 are continued in this section. 

The  character  table of the normalizer N(C) of each radical p-chain C given in 

(3A), (3.1) or (3.2) can be obtained by CAYLEY. 

(4A):  Let B be a p-block of the simple Conway group G -- Co3 within positive 

defect. If p is odd, then B satisfies the ordinary conjecture of bade. 

Proof: We may suppose p -- 5 or 3, and B = B0. 
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S u p p o s e p =  5 and let C - -  C(2), C' = C(3). By (3A), N(C) ~_ (5 × A5).4 
and N(C') ~- (5 x F~).4. By CAYLEY, N(C) has 25 irreducible characters, 4 

linear characters, 8 characters of degree 3, 5 of degree 4, 4 of degree 5, 2 of degree 

12, 1 of degree 16 and degree 20. By Lemma 6.9 of Dade [7], if C" is a radical 

p-chain of G such that N(C") has a p-block b inducing the block B of G, then 

the final subgroup of C" is conjugate to a subgroup of D(B). In particular, if 

B = B1 is the 5-block given by (2D) with D(B1) "~ 5, then k(N(C") ,  B~, d) ¢ 0 
for some d implies that C" --G C(1) or C(2), which are defined in (3A). By 
Theorem 9.1 of [7], Dade's conjecture holds for the cyclic block B1, so that 
by (1.4), k(N(C(1)),Bl,d) = k(N(C),Bl,d) for all integers d. By (2D) (a), 
k(G, Bl ,d)  = 5 or 0 according as d -- 1 or d ~ 1, so that I r r (N(C) ,Bl ,1 )  

contains 5 characters of defect 1 in Irr(N(C)).  But Irr(N(C)) has exactly 5 such 

characters with degrees 5 and 20, so the remaining 20 characters of Irr(N(C)) 

(with height 0) are characters of Irr(Bo(N(C))) as G has only two blocks with 
positive defect. Moreover, by the definition (5.5) of [7], k(N(C),  B0,d) -- 20 or 
0 according as d = 2 or d ~ 2. Since Co(52) = CN(C)(52) = 52 ~ g ( c ' ) ,  it 

follows by [8, Corollary V.3.11] that N(C') has only the principal block, so that 
Irr(N(C'))  = Irr(Bo(N(C'))). By CAYLEY, N(C') has 20 irreducible characters, 
8 linear characters, 8 characters of degree 2, 2 of degree 4 and degree 6. By 

definition, k(N(C'), Bo, d) -- 20 or 0 according as d = 2 or d ¢ 2. Thus 

k(N(C),  B0, d) = k(N(C') ,  B0, d). 

0. By CAYLEY, the degrees of irreducible characters of 
is given by Table 1. 

1. The degrees of characters of Irr(5~_ +2.24.2) 

for all integers d _> 
N(C(4))  _~ 5~_+2.24.2 

Table 
¢1 ~2 ~3 

1 1 1 

~15 ~16 ~17 
2 2 2 

1 1 1 1 1 2 2 2 2 2 2 

~ls ~19 ~20 ~21 ~22 ~23 ~24 ~2~ ~2~ 
2 20 20 20 20 24 24 40 40 

Since CG(5~_ +2) = 5 < 5~_ +2 ~ N(C(4)),  it follows that Bo(N(C(4))) is the only 

block of N(C(4)) ,  so that  Irr(N(C(4))) = Irr(Bo(Y(C(4)))). By Table 1 and the 
definition (5.5) of [7], 

Irr(N(C(4)),  Bo, 2) = {~19, ~2o, ~21, ~22, ~25, ~26} 

and Irr(N(C(4)),  Bo, 3) = Irr (N(C(4))) \  Irr(N(C(4)),  Bo, 2). By (2D) (a), 

Irr(Bo(G)) = Irr(G)\(Irr(B1) U Irr°(G)) 
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and so by [6, p. 135], Irr(G, B0, 2) = {X10, Xll, X15, X27, X30, X40} and 

Irr(G, B o , 3 ) = { x { : l < i < 4 ,  6 < i < 9 , 1 3 < i < 1 4 ,  1 8 < i < 1 9 ,  

32 < i < 34, i = 21,25,36,38,42}. 

It follows that  

k(G, B0, d) = k(N(C(4))) ,  B0, d) = 

/ 

( 

20 if d = 3, 

6 if d = 2, 

0 otherwise. 

Thus ~-'~4=1(-1)1c(~)} k(N(C(i)) ,  B0, d) = 0 for all integers d and (4A) follows by 

(3A) when p = 5. 

Suppose p = 3. The proof of (4A) is similar to the case when p = 5. Let 

C = C(2) and C' = C(3) given by (3.1). By (3B) (b), N(C) _ $3 × L2(8) : 3 

and N(C')  ~- S'.22 and by CAYLEY, the degrees of characters in I r r ( g ( c ) )  and 

I r r (N(C' ) )  are given by Tables 2 and 3. 

Table 2. The degrees of characters of Irr(S3 x L2(8) :3 )  

1 1 1 1 1 1 2 2 2 7 7 7 7 7 7 8 8 

8 8 8 8 14 14 14 16 16 16 21 21 27 27 42 54 

Table 3. The degrees of characters of Irr(S'.22) 

1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 

~1~ ~,7 ~ls ~,9 ~2o ~2, ~2 ~23 ~24 ~2~ ~26 ~27 ~2s ~29 ~3o 
2 2 2 2 2 2 2 2 2 4 4 4 6 6 12 

A proof similar to that  of the case when p = 5 shows that the affirmative answer 

to Dade's conjecture for the cyclic blocks implies that 

I r r (N(C),  B1,1) -- {~30,431, ~33} C Irr(N(C)) ,  

and Irr(Bo(N(C))) -= Irr(N(C)) \ Irr(N(C),B1,1) .  In addition, by CAYLEY, 

Cc(S' )  = Z(S')  <_ S' ~_ N(C'),  so that I r r (Y(C'))  = Irr(Bo(Y(C'))).  It follows 

by the definitions (1.3) and (5.5) of [7] that 

27 if d = 4, 

k(N(C(2)) ,  Bo, d) -- k(N(C(3)),  B0, d) -- 3 if d = 3, 

0 otherwise. 



Vol. 112, 1999 ALPERIN AND DADE CONJECTURE 127 

By CAYLEY,  the  degrees of i r reducible  charac ters  of N ( C ( 5 ) )  ~- S: (2 x SD2~) 

and  N ( C ( 6 ) )  -~ 35 : (2  x MI~) are  given as follows: 

Table  4. 

1 1 1 1 

4 4 4 4 

~37 ~38 ~39 ~40 

32 36 36 36 

Table  5. 

1 1 10 

~15 ~16 ~17 

22 22 44 

220 220 220 

The  degrees of charac ters  of l r r (S :  (2 × SD24)) 

1 1 1 1 2 2 2 2 2 2 4 4 4 4 

8 8 8 8 8 8 16 16 16 16 18 18 18 18 

~41 ~42 ~43 ~44 ~45 ~46 ~47 ~48 ~49 ~50 ~51 ~52 

72 72 72 72 72 72 72 72 72 72 72 72 

The  degrees of charac ters  of I r r (35 : (2  x M l l ) )  

~4 ~5 ~6 ~7 ~8 ~9 ~10 ~11 ~12 ~13 ~14 

10 10 10 10 10 11 11 16 16 16 16 

~18 ~19 ~20 ~21 ~22 ~23 ~24 ~25 ~26 ~27 ~28 

44 45 45 55 55 198 198 220 220 220 220 

~32 ~a3 ~34 ~35 ~a6 ~37 

352 440 880 880 880 880 

By (2B), Co(S) = Z(S) < S <1 N ( C ( 5 ) )  and  Cc(35)  = 35 <1 N ( C ( 6 ) ) ,  so t h a t  

b o t h  normal ize rs  N ( C ( 5 ) )  and  N ( C ( 6 ) )  have only the  pr inc ipa l  block. I t  follows 

t ha t  
33 if d = 7, 

k ( g ( c ) ,  B0, d) = c~ if d = 5, 

0 otherwise,  

where C E { C ( 5 ) , C ( 6 ) }  and  c~ = 19 or 4 according as C = C(5) or C(6) .  

Final ly ,  consider  C -- C(4) .  By CAYLEY,  the  degrees of i r reducib le  charac te rs  

of N(C) ~- 3~_+4:486 are  given by Table  6. 

Table  6. The  degrees of charac ters  of Irr(3~_+4: 4S6) 

1 1 1 1 5 5 5 5 5 5 5 5 8 8 9 9 9 9 

~19 ~20 ~21 ~22 ~23 ~24 ~25 ~26 ~27 ~28 ~29 ~30 ~31 ~32 ~33 ~34 ~35 ~36 

10 10 10 10 16 16 16 16 18 18 20 20 72 72 72 72 80 80 

~37 ~38 ~39 ~40 ~41 ~42 ~43 ~44 ~45 ~46 ~47 ~48 ~49 ~50 ~51 ~52 ~53 ~54 

80 80 90 90 90 90 160 160 160 160 162 162 180 180 288 288 320 360 

since C c ( 3 ~  +4) = Z(3~_+4), it  follows t ha t  Similarly,  

I r r ( N ( C ( 4 ) ) )  = I r r (B0(N( .C(4)) ) ) .  
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It follows by [6, p. 134] and Table 6 that 

33 if d - -  7, 

k ( g ( C ) , B 0 , d ) =  /3 if d = 5 ,  
2 if d = 3, 

0 otherwise, 

where C C {C(1), C(4)} and/3 = 4 or 19 according as C = C(1) or C(4). Thus 

6 

~--~.(-1) IC(j)l k( N ( C(j)  ), Bo, d) = 0 
j = l  

for all integers d, and by (3B) (a), Dade's conjecture holds when p = 3. 

(4B): Let B be a 2-block of the simple Conway group G = Co3 with defect 

d(B) > 1. Then B satisfies the ordinary conjecture of Dade. 

Proof: (1) Let C(i) be given by (3.2). If b G = B2 for some b e B l k ( g ( c ( i ) ) ) ,  

then by Lemma 6.9 of [7], the final subgroup of C(i) is a conjugate to a subgroup 

of 23 , so that  i e {1,10,13,16} as 2 a is 2B-pure. Let C = C(13) and C' = 

C(16), so that by (3C) (b), N(C)  ~- 2 x A4 x Sa and N(C' )  ~- (23 x S3).F 3. 

Since No(23) = N(C' ) ,  it follows by Brauer's First and Third Main Theorems, 

Theorems III.9.7 and V.5.4 of [8] that N(C' )  has two blocks bo(C') and b2(C') 

such that  bo(C') e = Bo and b2(C') a = B2. Since every defect group contains 

0 2 ( N ( C ' ) )  = 23, it follows that  N(C' )  has only two blocks. Now A4 has exactly 

one block and $3 has exactly two blocks, so that N(C)  has exactly two blocks 

bo(C) and b2(C) such that bo(C) = B o ( g ( c ) ) .  By (5.10) of [7] and Brauer's 

Third Main Theorem, bo(C) c = B0 and b2(C) c = B2. Let Irrd(B) be the 

subset of Irr(B) consisting of characters of defect d. By (1.3), I rr(N(C),  Bi, d) = 

Irrd(bi(C)) and I r r ( g ( c ' ) ,  Bi, d) = Irrd(bi(C')) for i = 0, 2. 

Since bo(C) = B0(2 x A4) x B0(S3) and b2(C) = B0(2 x A4) x 52 for the 

non-principal block b2 of $3, it follows that l Irrd(bo(C))l = 16 or 0 according as 

d = 4 or d ¢ 4, and I Irrd(b2(C))l = 8 or 0 according as d = 3 or d ¢ 3. Using 

CAYLEY, we can get the character table of N(C' )  and the degrees of characters 

in I r r (N(C ' ) )  are given by Table 7. 

Table  7. T h e  degrees  of characters  of Irr((23 × S3) .F~)  

1 1 1 1 1 1 2 2 2 3 3 3 3 

~15 e16 ~17 ~,s ~19 ~20 ~21 ~22 ~23 ~24 

6 7 7 7 7 7 7 14 14 14 

~14 

6 
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Using the  m e t h o d  of central  characters ,  we can get the irreducible characters  of 

bo(C') and b2(C'), 

I r r (b2(C') )  = {~7,~8 ,~9 ,~14,~15,~22,~23,~24} 

and I r r (b0(C ' ) )  = I r r ( N ( C ' ) ) \  I r r (b2(C')) .  It  follows tha t  

{ a if d = 4, 

k (N(C(13 ) ) ,  B,  d) = k (N(C(16) ) ,  B,  d) = /3 if d = 3, 

0 otherwise,  

where (c~,/3) = (16, 0) or (0, 8) according as B = B0 or B2. Since N(C(10 ) )  _~ 

2* × 111/12, it follows by J ames  [10, Theorem 8.2] and (2D) tha t  k(G,  B2, d) = 

k ( N ( C ( 1 0 ) ) ,  B2, d) = 8 or 0 according as d = 3 or d # 3. This  proves (4B) when 

B = B2. 

(2) Suppose  B = B0. By CAYLEY,  the degrees of irreducible characters  of 

N ( C ( 9 ) )  ~- 23.23.5'3 and N(C(14) )  _ 23.23.2 are given by Tables 8 and 9. 

Table  8. The  degrees of characters  of Irr(23.23.$3) 

~1 ~2 ~3 ~4 ~5 ~6 ~7 ~8 ~9 ~10 ~11 ~12 ~13 ~14 
1 1 1 1 1 1 1 1 2 2 2 2 3 3 

~15 ~16 ~,v ~,s ~,9 ~20 ~2, ~22 ~ z  ~24 ~25 ~2~ ~2v ~ 6  

3 3 3 3 3 3 6 6 6 6 6 6 6 6 

Table  9. The  degrees of characters  of Irr(23.23.2) 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

~17 ~18 ~19 ~20 ~21 ~22 ~23 ~24 ~25 ~26 ~27 ~28 ~29 ~30 ~31 ~32 
2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 

Since CG(23.23) = 2 x CM,2(E4.Es) = Z(23.23) 

Corol lary  V.3.11 of [8] tha t  N(C(9 ) )  has the 

Similarly, Bo(N(C(14))) is the unique block of N(C(14) ) .  

t ha t  
1~ if d = 7, 

k ( N ( C ) ,  go,d) = 12 if d = 6, 
if d = 5, 

otherwise, 

where  C e {C(9),  C(14)} and 7 = 0 or 4 according as C = C(9) or C(14).  By 
21+4 S CAYLEY,  the degrees of irreducible characters  of N ( C ( l l ) )  _ 2 x + • 3 are 

given by the  following table: 

(cf. [3, (2D)]), it follows by 

unique block Bo(N(C(9))). 
It  follows by (1.3) 
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Table 10. The degrees of characters of Irr(2 × 2~+4.$3) 

1 1 1 1 2 2 3 3 3 3 3 3 3 

~15 ~16 ~17 ~18 ~19 ~20 ~21 ~22 ~23 ~24 ~25 ~26 

3 3 3 3 4 4 4 4 6 6 8 8 

~14 

3 

1+4 Since Ca(2 × 2~_ +4) = 2 × CM1~(2+ ) = Z(2 × 2~_+4), it follows that  the principal 

block is the only block of N(C( l l ) ) .  By (3C) (b), N(C(10)) = 2* × M12 and 

the principal block of M~2 is given by James [10, Theorem 8.2]. If C = C(10) or 

C( l l ) ,  then by Table 10 and [10, Theorem 8.2], 

16 if d = 7, 

4 if d = 6, 

k(N(C),B0,d)  = ~] if d = 5, 

2 if d = 4, 

0 otherwise, 

where ~] = 0 or 4 according as C = C(10) or C(11). Similarly, Bo(N(C(15))) 
is the only block of N(C(15)) and by CAYLEY, g (c (15) )  -~ (24)*.F7 ~ has 16 

irreducible characters of height 0. Since N(C(12)) = 2 2 x A4, the principal block 

of N(C(12)) is the only block of N(C(12)) and moreover, k(N(C(15)), Bo, d) = 

k(N(C(12)), B0, d) = 16 or 0 according as d = 4 or d # 4. It follows that  

16 

(4.1) ~ ( - 1 )  [C(OI k(N(C(i)), Bo, d) = O. 
i=9  

By CAYLEY, the degrees of irreducible characters of N(C(3)) - 22.26.F22.2 and 

N(C(4)) --- 22.26.F22.$3 are given by Tables 11 and 12. 

Table 11. The degrees of characters of Irr(22.26.F322.2) 

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 6 

~19 ~2o ~1 ~2 ~2a ~24 ~25 ~26 ~7 ~s  ~29 ~39 ~1 ~32 ~33 ~34 ~35 ~ 
6 6 6 8 8 8 8 8 8 9 9 9 9 9 9 9 9 12 

12 12 12 12 16 16 16 16 16 18 18 18 18 24 24 24 24 48 
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Table  12. The  degrees of characters  of Irr(22.26.F~2 .$3) 

E1 E2 E3 ~4 E5 E6 E7 ~8 E9 EIO ~11 ~12 El3 El4 E15 
1 1 1 1 2 2 2 2 4 6 6 9 9 9 9 

E16 E17 E18 ~19 E20 E21 ~22 E23 E24 E25 E26 E27 E28 E29 E30 

9 9 9 9 12 12 12 12 18 18 18 18 18 18 24 

~31 E32 ~33 ~34 E35 E36 ~37 ~38 ~39 E40 ~41 E42 ~43 E44 E45 

24 24 24 27 27 27 27 36 36 36 36 36 48 72 72 

Since CG(22.26) = Z(22.26) < 22.26, it follows by [8, Corollary V.3.11] tha t  the  

principal  block is the  only block of N(C(3 ) )  and g ( c ( 4 ) ) .  If  C = C(3) or C(4),  

then  
16 i f d = l O ,  

12 if d = 9, 

k ( N ( C ) , B 0 , d ) =  10 if d = 8 ,  
c~ if d = 7, 

i f d = 6 ,  

0 otherwise, 

where  (a,  ~) = (10, 6) or (6, 1) according as C = C(3) or C = C(4).  By (2C), 

N ( C ( 5 ) )  -~ 2~_+6.L3(2) and N(C(6 ) )  - 24.As and by CAYLEY, the  degrees of 

irreducible characters  of N ( C ( 6 ) )  are given by Table 13. 

Table  13. The  degrees of characters  of Irr(24.As) 

E1 E2 E3 ~4 E5 E6 E7 E8 E9 EIO Ell E12 
1 7 14 15 20 21 21 21 28 35 45 45 

E15 E16 E~7 E1s E~9 E2o E21 E22 E23 E24 E25 
56 64 70 90 105 105 105 120 210 315 315 

El3 El4 

45 45 

The  degrees of irreducible characters  of 2~_+6.L3(2) are given by [2, Table  X], 

and moreover,  bo th  N ( C ( 5 ) )  and N(C(6 ) )  have exact ly  one block, the  principal  

block. I t  follows by Table 13 and [2, Table X] tha t  

k ( N ( C ) ,  B0, d) = 

16 if d = 10, 

4 if d -- 9, 

2 if d = 8, 

x if d = 7, 

y if d = 6, 

1 if d = 4, 

0 otherwise,  
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where  C E {C(5 ) ,C(6 )}  and (x,y) = (6,1) or (2,0) according as C = C(5) or 

c(6). 
By CAYLEY,  the  degrees of i r reducible  charac te rs  of N ( C ( 7 ) )  ~- 22.26.$3.$3 

and  N ( C ( 8 ) )  _~ 2.23.25.$3 are  given by Tables 14 and 15. 

Table  14. The  degrees of characters  of Irr(22.26.$3.$3) 

E1 ~2 ~3 ~4 ~5 ~6 ~7 ~S ~9 ~10 ~11 ~12 ~13 ~14 ~15 
1 1 1 1 2 2 2 2 3 3 3 3 4 6 6 

~16 ~17 ~18 ~19 ~20 ~21 ~22 ~23 ~24 ~25 ~26 ~27 ~28 ~29 ~30 
6 6 9 9 9 9 9 9 9 9 12 12 12 12 12 

~3, ~a2 ~33 ¢34 ~35 ~36 ~37 ~3s ¢39 ~4o 
18 18 18 18 24 24 36 36 36 36 

Table  15. T h e  degrees of characters  of Irr((2.23.25).$3) 

1 1 l 1 2 2 3 3 3 3 3 3 3 3 3 

~,6 ~,7 ~18 ~ 9  ~2o ~21 ~22 ~2~ ~24 {2s ~26 ~27 ~2~ {29 ~3o 

3 3 3 4 4 4 4 6 6 6 6 6 6 6 6 

~31 ~32 ~33 ~34 ~35 ~36 ~37 ~38 ~39 ~40 ~41 ~42 ~43 ~44 ~45 
6 6 8 8 8 8 12 12 12 12 12 12 16 24 24 

Moreover,  the  pr inc ipa l  block is the  only block of N ( C ( 7 ) )  and  N ( C ( 8 ) ) .  I t  

follows t h a t  

16 i f d = 1 0 ,  

12 if d = 9, 

k ( N ( C ) ,  B0, d) - 10 if d --  8, 
u if d = 7, 

v if d = 6, 

0 otherwise,  

where  C G {C(7 ) ,C (8 )} ,  (u,v) = (2,0) or (6, 1) according as C = C(7) or 

c(s). 
By CAYLEY,  the  degrees of i r reducible  charac ters  of N ( C ( 2 ) )  _~ 2.$6(2) a re  

given by  Table  16. 
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Table 16. The degrees of characters of Irr(2.S6(2)) 

~1 ~2 ~3 ~4 ~5 ~6 ~7 ~8 ~9 ~10 ~11 ~12 ~13 ~14 ~15 

1 7 8 15 21 21 27 35 35 48 56 64 64 70 84 

~16 4,7 4,s ~,9 ~20 ~21 ~22 ~23 4~4 ~:5 ~26 427 ~8 ~29 ~30 
105 105 105 112 112 120 120 168 168 189 189 189 210 210 216 

~31 ~32 ~33 ~34 ~35 ~36 ~37 ~38 ~39 ~40 ~41 ~42 ~43 

280 280 280 315 336 378 405 420 448 512 512 560 720 

133 

By Lemma 6.9 of Dade [7], k(N(C),  B1, d) > 1 for some radical chain C implies 

that  the final subgroup of C is conjugate to some defect group of D(B1) -- 2. 
Thus C --c  C(2) or C(1). Since Dade's conjecture for the cyclic blocks has 

an affirmative answer, it follows that k ( g ( c ( 1 ) ) ,  B1, d) = k(N(C(2)) ,  B1, d) for 

all integers d. In particular, by (2D) (b), Irr(N(C(2)),  B1, d) -- 2 or 0 accord- 

ing as d = 1 or d ¢ 1. Since N(C(2)) has exactly two irreducible characters 

~40 and ~41 of defect 1, it follows that Irr(N(C(2)),BI,1) = {~40,~41}. Since 

N(C(2))  -- N(D(B1)),  it follows by Brauer's First Main Theorem that N(C(2))  

has a unique block bl inducing B1. Thus Irr(bl) -- {~40, ~41}, since each charac- 

ter of Irr(bl) is a character of Irr(N(C(2)),  Bl ,d)  for some d. This implies that 

Irr(Bo(g(c(2))))  = Irr(N(C(2)))\Irr(bl). It follows by Table 16 and [6, p.135] 

that 
16 if d - -  10, 

4 if d = 9, 

2 if d = 8, 

k(N(C),  Bo, d) = a if d = 7, 

b if d = 6, 

3 if'd -- 4, 

0 otherwise, 

where C C {C(1),C(2)} and (a,b) = (6,1) or (10,6) according as C - - C ( 1 )  or 

C(2). Thus (4B) follows by (3C) (a), (4.1) and 

8 

E ( - 1 )  Iv(j)] k( N ( C(j) ), Bo, d) = O. 
j = l  

This completes the proof. 
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